34 Years of Leadership – Roque J. Calvo

Roque Calvo

ECS Executive Director, Roque Calvo marks 34 years of service

This week at ECS, we’re celebrating Executive Director Roque J. Calvo’s 34th anniversary with the Society. Through hard-work and a clear vision, Calvo has helped transform the Society into what it is today.

Here’s a brief look at Calvo’s roots with ECS and his 34-year journey with the Society.

Roque J. Calvo joined the Society staff in 1980 as the Accounting Supervisor, managing the financial operations for the headquarters. After two years, he was promoted to Assistant Executive Secretary. In 1991, ECS’s Bud Branneky retired and was succeeded by Calvo as the Executive Secretary – being only the fourth to claim this title in the Society’s 98-year history. The title was changed to Executive Director in 1994 – the title that Calvo holds to this day.

(more…)

Everybody Poops

WorldToiletDayHere at The Electrochemical Society, we give a crap about sanitation. With our recent partnership with the Bill & Melinda Gates Foundation – which awarded $210,000 in seed funding to innovative research projects addressing critical gaps in water and sanitation – we’ve spent a great deal of time these past few months talking about poop.  We plan to keep that trend alive, which brings us to World Toilet Day.

Two and a half billion people – 36 percent of the world’s population – don’t have access to a toilet, according to UNICEF. Globally, more people have mobile phones than toilets. Most people in developed countries think of access to adequate sanitation as a right rather than a privilege.

For this reason, ECS hosted the Electrochemical Energy and Water Summit, where some of the brightest minds in electrochemical and solid state science came together to brainstorm innovative ways to address the global sanitation crisis. We’re not just flushing and forgetting, we’re attempting to make adequate sanitation a basic human right.

(more…)

Electrochemical Synthesis of Inorganic Compounds: A Bibliography

Electrochemical Synthesis of Inorganic Compounds: A Bibliography

Zoltan Nagy, a visiting scholar with the Department of Chemistry at the University of North Carolina at Chapel Hill, asked me to post this kind offer:

I have written a bibliography book about Electrochemical Preparation of Inorganic Compounds (Plenum Press, 1985) with thousands of references.

I have continued to collect the references till the beginning of this year, many-many more thousands. But I realized that I will not be able to use them for anything worthwhile.

I am ready to donate the material to anybody who could make valuable use of it. I still have some of the manuscript of the book on disks.  The later ones are in a varied formats. Some on 3X5 cards, some pages copied from Chemical Abstracts with the appropriate abstract circled. And references with abstracts on CDs since 2005.

I would be ready to donate and ship to somebody interested.

I will keep them till the end of the year, if there is no interest, I’ll just get rid of them.

You can contact Zoltan at nagyz@email.unc.edu.

ECS Is Ready for Halloween

IMG_4562Here at the ECS Headquarters, we’re celebrating Halloween with a pumpkin decorating contest! Take a look at some of the staff’s creations while we send some interesting Halloween facts your way.

And don’t forget to take a look at the list we’ve compiled of Halloween-themed scientific experiments that are sure to make your holiday just a little bit more eerie.

line_Dividers

IMG_4560Where It All Began
Halloween can be traced back about 2,000 years to a Celtic festival called Samhain. In Gaelic, “Samhain” translates to “summer’s end.” Though the exact nature of this festival is not quite understood, it is thought to have been a time of communing with the dead. Most experts believe that Samhain and All Saints’ Day – due to their close proximity on the calendar – influenced each other and combined into the modern day Halloween.

(more…)

Top Halloween-Themed Scientific Experiments

All Hallows’ Eve. Dia de los Muertos. All Saints’ Eve. Day of the Dead. Halloween.

The name and celebrations may change throughout different parts of the world, but the mystery and thrill remain consistent. Here at ECS, we’re drumming up some ways to apply science to this holiday to make it even more eerie.

For kids or just kids at heart, here are some Halloween-themed experiments that are sure to get you in gear for this chilling time of year.

(more…)

Cover of JES

JES is one of the leading journals in the field of electrochemical science and technology, and is currently the second most-cited journal in this field.

We are pleased to announce that the impact factor (IF) for the Journal of The Electrochemical Society (JES) has increased by 10% over last year – it is now 2.859 – increasing its ranking for a third year in a row, making it one of the top 10 journals in the electrochemistry category.

JES has gone from #13 (2011 IF) to #11 (2012 IF) to #9 (2013 IF).

Equally important, JES continues to sit among the most-cited journals in electrochemistry, this year coming in as the third most-cited out of all electrochemistry journals.

The Society competes strongly with big publishers
We are especially proud that JES is competing so strongly with journals from much bigger publishers. As a nonprofit society publisher we are very pleased that our mission-based approach is able to continue to produce quality publications that are among the best in our field. Thank you for your support in this; it is our members, authors, reviewers, and editors that make this possible.

All ECS journals have impact factors in 2014
Our newer journals have also been given an impact factor this year, although they cannot be considered “full” impact factors as there is only year of data included in the IF calculation. ECS Electrochemistry Letters (EEL) is already performing strongly with a partial impact factor of 1.54; ECS Journal of Solid State Science and Technology (JSS) has an IF of 0.917, and ECS Solid State Letters (SSL) of 0.781. We look forward to seeing how they are performing when the full impact factors are published next year.

(Even the impact factor our archive journal, Electrochemical and Solid-State Letters (ESL), has increased, indicative of the long-term value of publishing with ECS.)

Take advantage of our OA offering to increase visibility
As part of our mission to disseminate our important research as widely as possible, ECS is keen to expand the number of articles published as Open Access. All our authors are offered the choice of publishing their article as OA at the point of submitting their manuscript.

Authors–who have attended one of our meetings, or are ECS members, or who come from subscribing institutions–can publish OA for free by using an article credit.

Find out more about ECS and OA or get in touch with us at oa@electrochem.org.

Thank you for your continued support!

BTW: We look forward to seeing you at our next bi-annual meeting in Chicago or the energy conversion and storage conference in Scotland!

Brainstorming

Over 100 researchers were guided through a brainstorming and working group session with the theme of improving access to clean water and sanitation in developing countries.

ECS is awarding $210,000 of seed funding to four innovative research projects addressing critical technology gaps in water, sanitation, and hygiene challenges being faced around the world.

Winners of the first Science for Solving Society’s Problems Challenge:

Artificial Biofilms for Sanitary/Hygienic Interface Technologies (A-Bio SHIT)
Plamen Atanassov, University of New Mexico, $70,000
Interfaces: Produce bio-catalytic septic cleaning materials that incorporate microorganisms removing organic and inorganic contaminants, while simultaneously creating electricity (or hydrocarbon fuel) for energy generation in support of a sustainable and portable system.

In-situ Electrochemical Generation of the Fenton Reagent for Wastewater Treatment
Luis Godinez, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC, Mexico, $50,000
Disinfection: Study the electro-Fenton approach using activated carbon to efficiently oxidize most of the organic and biological materials present in sanitary wastewater so that recycling of the wastewater might be possible.

powerPAD
Neus Sabate, Institut de Microelectrónica de Barcelona (CSIC); Juan Pablo Esquivel, University of Washington; Erik Kjeang, Simon Fraser University, $50,000
Monitoring and Measurement: Develop a non-toxic portable source of power for water measuring and monitoring systems, which will not require recycling facilities. Using inexpensive materials such as paper, nanoporous carbon electrodes and organic redox species, the team will strive to create a biodegradable and even compostable power source.

More than MERe microbes: Microbial Electrochemical Reactors for water reuse in Africa
Gemma Reguera, Michigan State University, $40,000
Chemical Conversion: Develop microbial electrochemical reactors that harvest energy from human waste substrates using bioanodes engineered to process the waste into biofuels while simultaneously cleaning water for reuse. The microbial catalysts will be selected for their efficiency at processing the wastes, but also for their versatility to process other residential and agricultural waste substrates. This will provide an affordable, easy to operate system for the decentralized processing of a wide range of wastes for improved sanitation, water reuse, and energy independence.

(more…)

Until now, the motor and the inverter, which converts the battery's direct current into alternating current for the motor, were two separate components.Credit: Siemns

Until now, the motor and the inverter, which converts the battery’s direct current into alternating current for the motor, were two separate components.
Credit: Siemens

A team of engineers at Siemens’ has developed a way to save space, reduce weight, and cut the cost of electric car production. The team’s solution revolves around integrating an electric car’s motor and inverter, which have always been two separate components prior to this development.

This from Siemens:

The solution’s key feature is the use of a common cooling system for both components. This ensures that the inverter’s power electronics don’t get too hot despite their proximity to the electric motor, and so prevents any reduction in output or service life.

Read the full article here.

Accordingly, the weight of the vehicle is reduced due the integration of the inverter into the motor, which will now only need a single housing. Additionally, the development produces added installation space that can be used for a charging unit.

For more information on current and future developments in the electric car industry, check out some of our past coverage or head over to the Digital Library to see what our scientists are working on.

IBM Contracts Company to Take Chip Unit

IBM reported that they will be getting out of the chip making business in order to give more attention to cloud computing and big data analytics.

The company will pay Globalfoundries $1.5 million over the next three years to take control of chip operations.

“They need to narrow their focus, get their A-game on, and any distractions from a core business perspective, such as this deal, need to be put in the rear-view mirror,” FBR Capital Markets analyst Daniel Ives told Reuters.

This is not the first notion of IBM reducing its presence in the hardware industry. Earlier this month, the company sold its x86 server business to Lenovo Group Ltd. For $2.1 billion.

This from Reuters:

Globalfoundries Chief Executive Sanjay Jha said the company would invest $10 billion between 2014 and 2015 to develop 10 nanometer, 14 nanometer and radio-frequency technologies.

Read the full article here.

What does the future hold for IBM? Connect with us to join us in the discussion.

The dolphin 'breathalyzer' will analyze the for health problems and aid in wildlife conservation.Credit: American Chemical Society

The dolphin ‘breathalyzer’ will analyze the for health problems and aid in wildlife conservation.
Credit: American Chemical Society

While breath analysis is most commonly known for its ability to detect alcohol consumption, it has the potential to extend far beyond that use. Breath analysis has the ability to diagnose a wide range of human conditions, and is now being utilized to aid the bottlenose dolphin.

Engineers from the University of California, Davis have developed a device for collecting dolphin breath for analysis. Because invasive techniques such as skin biopsies and blood sampling are difficult to perform on wild dolphins, this device will make it easier to check the health of the marine animals, study their biology, and aid in wildlife conservation.

This from UC Davis:

The researchers designed an insulated tube that traps breath exhaled from a dolphin’s blowhole and freezes it. They analyzed samples to create profiles of the mix of metabolites in breath, established baseline profiles of healthy animals and were able to identify changes in the breath of animals affected by disease or other factors. The researchers concluded that breath analysis could be used to diagnose and monitor problems in marine mammals – and, by extension, in ocean health as well.

(more…)