Hydro-Québec’s Center of Excellence in Transportation Electrification and Energy Storage is a world-class innovation hub in the field of battery materials for electric vehicles and other energy storage applications, both stationary and mobile.

The Center’s efforts focus on advanced lithium-ion batteries and solid state batteries. Its know-how, impressive intellectual property portfolio, and leading-edge facilities draw interest from around the world and make it an essential partner for major industry players involved in the development of tomorrow’s battery materials and technologies.

The Center of Excellence is reinventing energy for the electrified world of the future through its research on a number of fronts: battery materials, electrodes, electrochemical cells, modules, and battery packs. Our aim is to develop ultra-high-performance battery technologies and storage systems that will accelerate transportation electrification and make it possible to bring more renewables onto power grids, on a global scale. If we want to leave a viable planet to future generations, the time to act is now.

(more…)

BioLogic launches new webstie

We are thrilled to introduce our redesigned website and enhanced digital education platform, tailored to provide electrochemists and researchers with a seamless and enriching learning experience. Dive into our wide array of resources, designed for all expertise levels, and unlock the potential of on-demand education, expert-led webinars, and exclusive insights.

(more…)

Scribner moves to new state-of-the-art facility

Scribner's new facility

Scribner is thrilled to announce our recent move to a state-of-the-art facility, marking a significant milestone in our journey of innovation and excellence. This new facility is not just a physical upgrade but a strategic enhancement aimed at bolstering our Research and Development Lab. The expanded R&D capabilities will fuel continued customer support and drive our product and software development initiatives forward. This move underscores our commitment to providing cutting-edge solutions and maintaining our leadership in the electrochemical research community. 

(more…)

UCTeam Prague, GLASense, and AixSense Teams win awards

SensUs 2024 Competition

Every year, the annual international SensUs competition on sensors for health challenges student teams from around the world to develop a biosensor for a specific analyte as well as a business plan and live demonstration of their technology. At the event’s grand finale—the SensUs event at the Eindhoven University of Technology, the Netherlands—the teams showcase their developments, exchange knowledge with other teams, and have a good time. By involving students, industry, patients, and healthcare professionals, SensUs strives to accelerate the development and innovation of biosensors and to stimulate education in this field. ECS Institutional Partner PalmSens supports SensUs.

(more…)

Plan Ahead to Buy Lab Equipment

Alex Peroff, Ph.D.Alex Peroff, Ph.D.
Electroanalytical Scientist
Pine Research Instrumentation

We live in a world of instant gratification. Whether it’s streaming video from Netflix, food from Doordash, or next-day delivery from Amazon, we can have it with the click of a button. And in large part, scientific equipment suppliers are keeping up. From online portals generating fast purchase orders, to maintaining sufficient inventory, scientific equipment suppliers are meeting the needs of research scientists. However, as I mentioned briefly in an earlier ECS Blog post, COVID has affected the global supply chain, and its impact has trickled down to scientific equipment suppliers.

Most news headlines reflect the microchip shortage and its impact on the automobile industry. However, the microchip supply is not the only culprit. Automobile manufacturers grew accustomed to receiving parts quickly. As a result, they never kept extra chips in stock. Why keep additional inventory when it could be delivered at a moment’s notice? While it is undoubtedly a more economical and efficient system, its a vulnerability when your supplier can’t deliver on time. Having spare equipment to do your work is a lesson I learned early on when I was a graduate student. (more…)

IBM Research

An Argon-filled “glove box” in the IBM Research Battery Lab, which is used to prepare air-sensitive battery materials such as lithium metal anode and electrolyte formulations, both of which were used in this new battery design. Courtesy: IBM Research

By Young-Hye Na, Manager of Advanced Battery Research Program, IBM Research-Almaden, US

Our world has no shortage of problems to solve. We now stand at a critical juncture for global action to address our most pressing challenges; from the COVID pandemic to climate change and so much more.

IBM has long recognized the urgency to find more sustainable solutions to tackle these problems (The Urgency of Science). For the first time in history we have the right tools at our disposable to do so. AI (artificial intelligence)—combined with advanced computing and access to enormous volumes of data via a secure and open hybrid cloud—can significantly accelerate the process of scientific discovery and the creation of more sustainable materials for use across a broad range of industries, including energy and batteries. 

Better batteries for cleaner energy

(more…)

Guest blog by Sujan Shrestha, PhD, Applications Engineer, Admiral Instruments

This is a guide for electrochemists interested in understanding and validating the DC accuracy of their potentiostats. To begin, it’s important to understand how to properly interpret the specifications of the potentiostat to calculate the expected accuracy of current and voltage measurements. Keep in mind that accuracy, precision, etc., also depend on the device under test (DUT). A reliable measurement can’t be obtained from a DUT whose electrochemical properties are in constant flux. (more…)

Electrochemistry in Orbit

Guest blog by Dr. Alyson Lanciki, Scientific Editor, Metrohm International

For over twenty years now, there has been continuous human occupation off our planet.

The International Space Station (ISS), launched in 1998, is a modular satellite in low orbit around the Earth, which is visible even with the naked eye.

In October, NASA launched an Antares rocket carrying a Cygnus resupply ship. This cargo ship carried an experimental system on board used to study the oxidation of ammonia under microgravity conditions to convert urine into water on the ISS. Improving this waste management system has far-reaching repercussions for longer exploratory missions where the weight of the payload must be optimized with the amount of water needed (which is heavy) to sustain life during the trip. Given the limited resources aboard a spaceship, the recovery of water from all processes is of great importance. (more…)

The following guest post is by Morgan Frey, Marketing Lead, Ereztech LLC

Logistics may not be top-of-mind when thinking about electrochemical and solid state manufacturing processes, but one failed shipment can throw an entire production schedule off target. Specialty chemicals, such as atomic layer deposition (ALD) precursors for the manufacture of thin films, are considered hazardous materials (hazmat) and therefore require special care and preparation for transportation. (more…)

Join the National Academies of Sciences, Engineering, and Medicine for a workshop, Advances, Challenges, and Long-Term Opportunities for Electrochemistry: Addressing Societal Needs. The workshop is on November 18-19, 2019 in Washington, DC. under the auspices of the Chemical Sciences Roundtable of the Board on Chemical Sciences and Technology.

The workshop features sessions on the latest applications of electrochemistry in energy storage, energy conversion, and electrosynthesis. In addition to technical talks, speakers and the audience will discuss the resource, training, and workforce needs to advance electrochemistry in the United States. (more…)

  • Page 1 of 3