Researchers around the world have been talking about the potential of “wonder material” graphene since it first entered the field of materials science. However, for all its promising theoretical potential and applications, we’ve yet to see the material make its way to the market. Now, after an announcement by Chinese-based Guangzhous OED Technologies, graphene may make its first appearance in the marketplace within the next year.

The company just announced that they have developed what they are claiming is the “world’s first graphene electronic paper.” The e-paper, which is a display device that mimics the appearance of ordinary ink on paper, is expected to be taken to further heights with this development.

This from Phys:

The group at OED claims to have developed a graphene material that is suitable for use in making e-paper. Doing so, they also claim, allows for creating screens that are more bendable and that are also brighter because they will be able to display light with more intensity. They also suggest that because the end product will be carbon based, it should be cheaper to manufacture than current e-paper products which are based on metal indium.

(more…)

Remembering Harry Kroto

Harry KrotoA giant among giants

Harry Kroto, distinguished chemist and pioneering nanocarbons researcher, passed away on April 30, 2016 at the age of 76. Kroto, a giant among giants, made an immense impact not only on ECS and its scientific discipline – but the world at large.

“Harry Kroto’s passing is a great loss to science and society as a whole,” says Bruce Weisman, professor at Rice University and division chair of the ECS Nanocarbons Division. “He was an exceptional researcher whose 1985 work with Rick Smalley and Bob Curl launched the field of nanocarbons research and nanotechnology.”

Revolutionizing chemistry

That work conducted by Kroto, Smalley, and Curl yielded the discovery of the C60 structure that became known as the buckminsterfullerene (or the “buckyball” for short). Prior to this breakthrough, there were only two known forms of pure carbon: graphite and diamond. The work opened a new branch in chemistry with unbound possibilities, earning the scientists the 1996 Nobel Prize in Chemistry.

The field of nanocarbons and fullerenes, since the discovery by Kroto and company, has evolved into an area with almost limitless potential. The applications for this scientific discipline are wide-ranging – from energy harvesting to sensing and biosensing to biomedical applications and far beyond. Research in this field continues to fill the pages of scholarly journals, making possible innovations that were not even conceived before the seminal 1985 work.

(more…)

Carbyne

Image: Lei Shi/Faculty of Physics, University of Vienna

The material Carbyne hit the benchtop years ago. Scientists were able to calculate the properties of this exotic material, but not able to stabilize it. Carbyne promised to be stronger and stiffer than any other material known to man, but the question of how to synthesize it remained.

Now, researchers from the University of Vienna in Austria were able to do just that. The researchers took the highly reactive, one-dimensional chain of carbon atoms and synthesized it by wrapping it in a double-walled tube of graphene that provided a protective casing, allowing the material to remain intact.

This from Gizmodo:

The record for stringing together carbon atoms like this in the past had been 100 in a row; now, the team can put 6,400 atoms together, and have them remain in a chain for as long as they want. That is, of course, as long as they sit inside the carbon Thermos. It remains to be seen how useful Carbyne will be whilst wrapped up, but for now it’s the best that researchers can achieve.

Read the full article.

While not much is known about Carbyne, the material is believed to be stronger than both graphene and diamonds, and twice the stiffness of any known material. Maybe (just maybe) this could bring us one step closer to space elevators.

Artificial limbs have experience tremendous evolution in their long history. Throughout history, we’ve gone from the peg leg of the Dark Ages to technologically advanced modern day prosthesis that mimic the function of a natural limb. However, most prosthesis still lack a sense of touch.

Zhenan Bao, past ECS member and chemical engineer at Stanford University, is at the forefront of the research looking to change that.

(MORE: Read Bao’s past meeting abstracts in the ECS Digital Library for free.)

Recently on NPR’s All Things Considered, Bao described her work in developing a plastic artificial skin that can essentially do all the things organic skin can do, including sensing and self-healing.


The self-healing plastic Bao uses mimics the electrical properties of silicon and contains a nano-scale pressure sensor. The sensor is then connected to electrical circuits that connect to the brain, transmitting the pressure to the brain to analyze as feeling.

Additionally, the skin is set to be powered by polymers that can turn light into electricity.

While there is still much work to be done, Bao and her colleagues believe that this product could help people who have lost their limbs regain their sense of touch.

Graphene’s potential seems limitless. From to patches that monitor glucose and inject treatment to water-splitting capabilities, the popularly proclaimed “wonder material” is finding a home in a host of applications. However, graphene has yet to make it wide-spread, commercial applications.

To help take graphene from the lab to society, the Graphene Flagship has been formed as a European initiative promoting collaborative research on the up-and-coming material. Recently, the initiative published a paper detailing the possibility of creating light-responsive graphene-based devices that could be applied to anything from photo-sensors to optically controllable memories.

(MORE: Listen to our podcast with nanocarbons expert Bruce Weiseman, where we talk graphene, fullerenes, and all things nano.)

This from Graphene Flagship:

The work shows how, by combining molecules capable of changing their conformation as a result of light irradiation with graphite powder, one can produce concentrated graphene inks by liquid phase exfoliation. These graphene inks can then be used to make devices which, when exposed to UV and visible light, are capable of photo-switching current in a reversible fashion.

(more…)

The iconic Moore’s law has predicted the technological growth of the chip industry for more than 50 years. When ECS member and co-founder of Intel Gordon Moore proposed the law, he stated that the number of transistors on a chip would double every two years. So far, he’s been correct.

But researchers have started hitting an apex that makes keeping the pace of Moore’s law extremely difficult. It has become harder in recent years to make transistors smaller while simultaneously increasing the processing power of chips, making it almost impossible to continue Moore’s law’s projected growth.

However, researchers from MIT have developed a long-awaited tool that may be able to keep driving that progress.

(READ: “Moore’s Law and the Future of Solid-State Electronics“)

The new technology that hopes to keep Moore’s law going at its current pace is called extreme-ultraviolet (EUV) lithography. Industry leaders say it could be used in high-volume chip manufacturing as early as 2018, allowing continued growth in the semiconductor industry, with advancements in our mobile phones, wearable electronics, and many other gadgets.

(more…)

A research team, including ECS members Stephen Doorn and Erik H Hároz, has created flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes thanks to a simple filtration process. In a discovery that was previously though impossible, the researchers found that in the right solution and under the right conditions, the tubes can assemble themselves by the millions into long rows.

(ICYMI: Get the freshman 101 on carbon nanotubes from nanocarbons expert Bruce Weisman.)

This development could help bring flexible electronics to actuality, especially with the special electronic properties of the nanotubes.

“Once we have centimeter-sized crystals consisting of single-chirality nanotubes, that’s it,” said Junichiro Kono, Rice University physicist leading the study. “That’s the holy grail for this field. For the last 20 years, people have been looking for this.”

Glucose monitoring has had a long history with electrochemical science and technology. While ECS Honorary Member Adam Heller’s continuous glucose monitoring system for diabetes management may be the first innovation that comes to mind, there is a new electrochemical bio-sensing tool on the horizon.

(WATCH: ECS Masters – Adam Heller)

Researchers have combined graphene with a tiny amount of gold to enhance the wonder material’s properties and develop a flexible skin patch to monitor blood glucose and automatically administer drugs as needed.

This from Extreme Tech:

[As] cool as a non-invasive blood-glucose monitor is, it’s nearly as revolutionary as what comes next: treatment. The patch is studded with “microneedles” that automatically cap themselves with a plug of tridecanoic acid. When high blood-glucose levels are detected, the patch heats a small heater on the needles which deforms the plug and allows the release of metformin, a common drug for treatment of type 2 diabetes. Cooling naturally restores the plug and stops drug release.

Read the full article.

This development is a huge stepping stone in the transformation of graphene as a laboratory curiosity to a real product. While it has taken a while due to the questions of the new material’s intrinsic properties, researchers believe that graphene-based products could soon be hitting the market.

Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene's properties.Image: Brown University

Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene’s properties.
Image: Brown University

By now we’ve heard about the seemingly endless possibilities for the wonder material graphene. The engineers at Brown University are looking to make those possibilities even more appealing through a process that could make the nanomaterial both water repellant and enhance its electrochemical properties.

The research team is looking to improve upon the already impressive graphene by wrinkling and crumpling sheets of the material by placing it on shrink polymers to enhance its properties, potentially leading to new breakthroughs in batteries and fuel cells.

This from Brown University:

This new research builds on previous work done by Robert Hurt and Ian Wong, from Brown’s School of Engineering. The team had previously showed that by introducing wrinkles into graphene, they could make substrates for culturing cells that were more similar to the complex environments in which cells grow in the body. For this latest work, the researchers led by Po-Yen Chen, a Hibbit postdoctoral fellow, wanted to build more complex architectures incorporating both wrinkles and crumples.

Read the full article.

Crumpling the graphene makes it superhydrophobic, a property that could be used to develop self-cleaning surfaces. Additionally, the enhanced electrochemical properties could be used in next-generation energy storage and production.

“You don’t need a new material to do it,” said Po-Yen Chen, co-author of the study. “You just need to crumple the graphene.”

Upcycling has become a huge trend in recent years. People are reusing and repurposing items that most wouldn’t give a second glance, transforming them into completely new, high-quality products. So what if we could take that same concept and apply it to the greenhouse gas emissions in the environment that are accelerating climate change?

An interdisciplinary team from UCLA is taking a shot at upcycling carbon dioxide by converting it into a new building material named CO2NCRETE, which could be fabricated by 3D printers.

“What this technology does is take something that we have viewed as a nuisance – carbon dioxide that’s emitted from smokestacks – and turn it into something valuable,” says J.R. DeShazo, senior member of the research team.

The fact that the team is attempting to produce a concrete-like material is also important. Currently, the extraction and preparation of building materials like concrete is responsible for 5 percent of the world’s greenhouse gas emissions. The upcycling of carbon could cut that number drastically all while reducing the enormous emissions being released from power plants (30 percent of the world’s emissions).

“We can demonstrate a process where we take lime and combine it with carbon dioxide to produce a cement-like material,” says Gaurav Sant, lead scientific contributor. “The big challenge we foresee with this is we’re not just trying to develop a building material. We’re trying to develop a process solution, an integrated technology which goes right from CO2 to a finished product.”

  • Page 6 of 10