Member Spotlight – Alireza Mahdavifar

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.Image: Georgia Tech/The Poultry Site

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.
Image: Georgia Tech/The Poultry Site

Along with a team of researchers out of Georgia Tech, ECS student member Alireza Mahdavifar has designed and fabricated the prototype of a microfluidic device that exploits cell movement to separate live and dead bacteria during food processing.

The research, entitled “A Nitrocellulose-Based Microfluidic Device for Generation of Concentration Gradients and Study of Bacterial Chemotaxis,” has been recently published in the Journal of The Electrochemical Society.

The new development consists of a microfluidic device that exploits cell movement to separate live and dead bacterial during food processing. The device is novel due to the fact that while screening for foodborne pathogens, it can be difficult to distinguish between viable and non-viable bacteria. Mahdavifar and the team out of Georgia Tech responded to this issue by creating a device that can separate live cells from dead ones for real-time pathogen detection.

(more…)

Member Spotlight – Ryohei Mori

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.Image: Journal of The Electrochemical Society

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.
Image: Journal of The Electrochemical Society

A new long-life aluminum-air battery is set to resolve challenges in rechargeable energy storage technology, thanks to ECS member Ryohei Mori.

Mori’s development has yielded a new type of aluminum-air battery, which is rechargeable by refilling with either salt or fresh water.

The research is detailed in an open access article in the Journal of The Electrochemical Society, where Mori explains how he modified the structure of the previous aluminum-air battery to ensure a longer battery life.

Theoretically, metal-air technology can have very high energy densities, which makes it a promising candidate for next-generation batteries that could enable such things as long-range battery-electric vehicles.

However, the long-standing barrier of anode corrosion and byproduct accumulation have halted these batteries from achieving their full potential. Dr. Mori’s recently published paper, “Addition of Ceramic Barriers to Aluminum-Air batteries to Suppress By-product Formation on Electrodes,” details how to combat this issue.

(more…)

Member Spotlight – Jiaxing Huang

ECS member Jiaxing Huang used freshman-level chemistry to solve the solubility mystery of graphene oxide films.Image: Northwestern University

ECS member Jiaxing Huang used freshman-level chemistry to solve the solubility mystery of graphene oxide films.
Image: Northwestern University

Sometimes science can be extremely complex and commanded by technical expertise. But there are moments when one has to go back to his roots to find a more simple answer for a complex issue. That is what ECS member Jiaxing Huang – along with a team of Northwestern University researchers – has done in order to solve the mystery that surrounds the solubility of graphene oxide films.

For years, one question has puzzled the materials science community – why are graphene oxide (GO) films highly stable in water?

When submerged, GO sheets become negatively charged and repel, which should cause membrane to disintegrate. Though much to the confusion of the scientific community, when GO sheets are submerged they stabilize.

(more…)

Member Spotlight – Stephen Harris

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.Image: Rich Saykally, Berkeley Labs

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.
Image: Rich Saykally, Berkeley Labs

The Electrochemical Society’s Stephen Harris, along with a team of researchers from  Berkeley Lab, have found a possible avenue to a better electrolyte for lithium-ion batteries.

Harris – an expert on lithium-ion batteries and chemist at Berkeley Lab’s Materials Science Division – believes that he and his team have unveiled something that could lead to applying lithium-ion batteries to large-scale energy storage.

Researchers around the world know that in order for lithium-ion batteries to store electrical energy for the gird or power electric cars, they must be improved. The team at Berkeley decided to take on this challenge and found surprising results in the first X-ray absorption spectroscopy study of a model lithium electrode, which has provided a better understanding of the liquid electrolyte.

Previous simulations have predicted a tetrahedral solvation structure for the lithium-ion electrolyte, but the new study yields different results.

(more…)

Member Spotlight – Telpriore “Greg” Tucker

Tucker, a six year ECS member, aims to develop future transportation that is sustainable and fun to use.Credit: Arizona State University

Tucker aims to develop transportation that is sustainable and fun to use.
Credit: Arizona State University

Hard-work and perseverance have paid off for The Electrochemical Society’s Telpriore “Greg” Tucker. From chemist, to mentor, to entrepreneur—the Arizona State University doctoral graduate aims to make an impact in renewable energy and transportation.

With his new degree in hand, Tucker plans to revisit his business plans for The Southwest Battery Bike Company, which focuses on developing electric bicycles that can provide a more affordable and greener source of transportation.

“I’ve always had an interest in transportation and how to make it more affordable and sustainable for the public,” Tucker says. “Since my degree focuses on batteries for renewable energy purposes, I began to see a lot of applications from my research. Some of the best jobs can spring from your hobby or projects that you enjoy doing.”

(more…)

Member Spotlight – Vilas Pol

Vilas Pol has assisting in discovering a nanoparticle network that could bright fast-charging batteries. He joined the Society in 2012.Credit: Argonne National Laboratory

Vilas Pol has assisted in the discovery of a nanoparticle network that could bring fast-charging batteries. He joined the Society in 2012.
Credit: Argonne National Laboratory

The Electrochemical Society’s Vilas Pol, along with a team of Purdue University researchers, has developed a nanoparticle network that could produce very fast-charging batteries.

This new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes, all by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles.

This from Purdue University:

The researchers have performed experiments with a “porous interconnected” tin-oxide based anode, which has nearly twice the theoretical charging capacity of graphite. The researchers demonstrated that the experimental anode can be charged in 30 minutes and still have a capacity of 430 milliamp hours per gram (mAh g−1), which is greater than the theoretical maximum capacity for graphite when charged slowly over 10 hours.

(more…)

Member Spotlight – Chanyuan Liu

Chanyuan Liu

Chanyuan Liu, ECS member and Ph.D. student at the University of Maryland, is the lead author on the nanopore study.
Credit: University of Maryland

The Electrochemical Society’s Chanyuan Liu, along with a team of University of Maryland researchers, believe they have developed a structure that could bring about the ultimate miniaturization of energy storage components.

The tiny structure, known as the nanopore, includes all the components of a battery and can be fully charged in 12 minutes and recharged thousands of times.

This from University of Maryland:

The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end. The existing device is a test, but the bitsy battery performs well.

(more…)

Member Spotlight – Shelley Minteer

ECS's Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.Credit: Dan Hixson/University of Utah College of Engineering

ECS’s Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.
Credit: Dan Hixson/University of Utah College of Engineering

The Electrochemical Society’s Shelley Minteer and her team of engineers at The University of Utah have developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without need to ignite the fuel.

The new fuel cells will be able to be used to power portable electronics, off-grid power, and sensors.

The study was published in the American Chemical Society journal ACS Catalysis with Minteer as the senior author.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says Minteer. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.”

The standard technique for converting jet fuel to electricity is both difficult, due to the sulfur content, and inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

This from The University of Utah:

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

Read the full article here.

Minteer is a valued member of ECS and is on the editorial board of the Journal of The Electrochemical Society and ECS Electrochemistry Letters – along with being a past chair of the Physical and Analytical Electrochemistry Division. You can also read her published research in our Digital Library.

Make sure to sign up for our e-Alerts so you don’t miss the newest, cutting-edge research!

Member Spotlight – Donald R. Sadoway

Donald R. Sadoway

Sadoway’s research seeks to establish the scientific underpinnings for technologies that make efficient use of energy and natural resources in an environmentally sound matter.
Credit: MIT

Donald R. Sadoway – a prominent member of The Electrochemical Society and electrochemist at the Massachusetts Institute of Technology in Cambridge – has led a team of researchers at MIT to improve a proposed liquid battery system that could help make sources of renewable energy more viable and prove to be a competitor for conventional power plants.

This from MIT News:

Sadoway, the John F. Elliott Professor of Materials Chemistry, says the new formula allows the battery to work at a temperature more than 200 degrees Celsius lower than the previous formulation. In addition to the lower operating temperature, which should simplify the battery’s design and extend its working life, the new formulation will be less expensive to make, he says.

(more…)

  • Page 10 of 10