Edward Goodrich Acheson (1856-1931), one of the charter members of ECS, is best known for having invented and commercialized carborundum, an artificial graphite.

BiographyEdward G. Acheson

Acheson was born in southwestern Pennsylvania and raised its coal fields. At the age of 16, after his father died, he left school to help support his family. Nevertheless, Acheson devoted his nights to the scientific endeavors, especially electrical experiments.

In 1880, Acheson attempted to sell a battery of his own invention to Thomas Edison, who ended up hiring him to assist with his research. He experimented with creating a conducting carbon that Edison could use in his electric light bulbs.

After working for Edison for four years, Acheson left his employ to become an independent inventor. In 1891, Acheson acquired access to an electric
generating plant and attempted to use electric heat to impregnate clay with carbon. What resulted from this experiment was his discovery of a crystalline substance that had value as an abrasive, which Acheson named “carborundum” (also known as silicon carbide).

In 1894, he established the Carborundum Company in Monongahela City, Pennsylvania, which created grinding wheels, whet stones, knife sharpeners, and powdered abrasives. Later, Acheson used his electric furnace to produce artificial graphite, which  he commercialized, discovering that various organic substances allowed colloidal suspension of particles of graphite mixed in oil or water.

Acheson received 70 patents related to abrasives, graphite products, reduction of oxides, and refractories. ECS awarded him the first Acheson Award, named in his honor, in 1931.

(more…)

Automatic Membership Renewal is Live!

Attention all current and prospective ECS members!

The days of expiration date anxiety and manual renewal hassle are officially behind us! Our automatic membership renewal system is up and running!ECS logo

Here at the ECS, we are committed to making membership beneficial and convenient. We want you, our highly valued members, to be able to enjoy the rewards of ECS membership without experiencing the slightest modicum of excess stress.

So let us handle membership renewal for you. Please. We insist!

Enroll now in our automatic renewal system and fret no more about membership expiration dates and manual renewals. Let us make your life easier. Lessen your load to free yourself up and focus on what really matters to you as an ECS member: learning, collaborating, innovating, achieving, and freeing the science.

Want to set up your membership to renew automatically?

Step 1: Login and click My Account.
Step 2: Select My Memberships from the My Account Links menu.
Step 3: In your active membership, click Enroll Now and follow steps for setup.

It’s that easy!

Questions? Contact customerservice@electrochem.org or call 609.737.1902 x100.

Study EIS in Minnesota!

Join the Twin Cities Section this April for a hands-on, day-long introduction into the field of electrochemical impedance spectroscopy (EIS)! The Introduction to EIS short course will be held at the Hampton Inn in Shoreview, MN on Friday, April 29th, from 9:00 a.m. to 4:30 p.m. (CT) and will be taught by impedance spectroscopy expert Professor Mark Orazem.

What is a short course?

Taught by academic and industry experts in intimate learning settings, short courses offer students and professionals alike the opportunity to greatly expand their knowledge and technical expertise.

Introduction to EIS

This EIS short course is an all-day class designed to provide students and the seasoned professional with an interest in applying electrochemical impedance techniques to study a broad variety of electrochemical processes. Attendees will develop an understanding of the technique, how to develop models with physical significance, and how to use graphical and regression methods to interpret measurements. Examples will include aMark Orazemspects of corrosion, biological systems, and batteries.

About the instructor

Professor Mark Orazem is a recognized expert on impedance spectroscopy and coauthor of a textbook on electrochemical impedance spectroscopy. Orazem is a Distinguished Professor of Chemical Engineering at the University of Florida, a Fellow of the Electrochemical Society, and recipient of the 2012 ECS Linford Award.

Registration Fees
Registration Fees Early-Bird Fees* Regular Fees*
ECS Member $400 $500
Nonmember $450 $550
ECS Student Member $200 $250
Student Nonmember $250 $300

* All prices are in U.S. Dollars.

Save $$ on registration and enjoy the benefits of membership. Become an ECS member today!

Pre-registration for short courses is required. The early-bird deadline is April 15, 2016. All course materials are prepared in printed format for registrants upon arrival.

Registration opens Monday, March 28, 2016!

Contact twincitiesecs@hotmail.com with any questions.

Attending the 229th ECS Meeting in San Diego? Check out the five ECS short courses being offered at the meeting, including Advanced Impedance Spectroscopy, taught by Professor Orazem!

After the few years of dormancy, the New England Section of ECS is looking to engaged members in the region.

Section officers invite members wanting to actively participate in local section functions, including suggesting speakers and venues for programming, to contact Prof. Sanjeev Mukerjee, Northeastern University, at s.mukerjee@neu.edu.

First section meeting is slated for late spring 2016. More information will be distributed to section members.

To updated your section membership, contact customerservice@electrochem.org.

Not a member of ECS? Join, rejoin or renew today!

University of Iowa Student ChapterECS senior vice president and professor at the University of Texas at Arlington, Krishnan Rajeshwar, recently visited the University of Iowa’s ECS Student Chapter to discuss research, meet with faculty, and deliver a lecture on solid state materials.

Rajeshwar’s research touches areas ranging from the first demonstrated use of ionic liquid electrolytes for electrode stabilization in photoelectrochemical (PEC) devices to novel approaches to the electrosynthesis of binary and ternary semiconductor thin films.

Recently, his studies have addressed the use of solid state chemistry principles to the design of electrodes for energy conversion and solar fuel generation. Rajeshwar applied some of these concepts to his lecture, “In a Solid State Materials Chemistry Wonderland: A 40-Year Odyssey,” which he delivered to the ECS Student Chapter at the University of Iowa.

(MORE: Check out additional research by Rajeshwar.)

Throughout his visit, Rajeshwar met with the faculty from the university’s departments of chemistry and engineering, discussed science and current events with student members, and was hosted to dinner by ECS 2nd vice president Johna Leddy.

Learn more about ECS Student Chapters.

Image: Assianir

Image: Assianir

A recent pistachio recall is bringing Salmonella and other foodborne illnesses back into the national spotlight. The popularity of the in-shell pistachio brands recalled paired with the long shelf-life of the nut has health experts concerned for the potential of the foodborne illness to spread rapidly. Many are again asking: how can we better control food safety?

Shin Horikawa and his team at Auburn University believe their novel biosensor technology could resolve many of the current issues surrounding the spread of foodborne illnesses. As the principal scientist for a concept hand-picked for the FDA’s Food Safety Challenge, Horikawa is looking to make pathogen detection faster, more specific, and cheaper.

Faster, cheaper, smarter

“The current technology to detect Salmonella takes a really long time, from a few days to weeks. Our first priority is to shorten this detection time. That’s why we came up with a biosensor-based detection method,” Horikawa, Postdoctoral researcher at Auburn University and member of ECS, says.

Horikawa and his team’s concept revolves around the placement of a tiny biosensor—a sensor so small that it’s nearly invisible to the human eye—on the surface of fresh fruits and vegetables to detect the presence of pathogenic organisms such as Salmonella. This on-site, robust detection method utilizes magnetoelastic (ME) materials that can change their shape when a magnetic field is applied. The materials respond differently to each magnetic field, changing their shapes accordingly. This allows the researchers to detect if a specific pathogen—such as Salmonella—has attached to the biosensor.

(more…)

The ECS Outstanding Student Chapter Award was established in 2012 to recognize distinguished student chapters that demonstrate active participation in The Electrochemical Society’s technical activities, establish community and outreach activities in the areas of electrochemical and solid state science and engineering education, and create and maintain a robust membership base.

Click here for complete rules and nomination requirements. Nominations are being accepted for the 2016 award, which will be presented at the PRiME 2016 in Honolulu, HI, October 2-7, 2016.

For questions or additional information, please contact awards@electrochem.org. Submission deadline extended through April 15, 2016.

Apply today!

The 2015 Outstanding Student Chapter Award Recipient student-blog

The 2015 ECS Outstanding Student Chapter Award recipient was Indiana University. Founded in 2015, Indiana University brings together members from a variety of research backgrounds such as mechanistic organic, environmental, bioanalytical, and materials, to promote interdisciplinary discussions about electrochemistry and solid state science. Led by faculty advisors Professor Dennis Peters and Professor Lane Baker, this group has hosted guest speakers, including Allen J. Bard and Nate Lewis, on their campus to not only present seminars, but also give career advice. The mission of the Indiana Student Chapter is to spread knowledge of electrochemical science to the younger members of their community.

Canada Section: 2016 Spring Meeting

Join the ECS Canada Section for their 2016 Spring Meeting! The meeting will be held at Saint Mary’s University in Halifax, Nova Scotia on Friday, June 10, 2016 and will feature four illustrious speakers, including keynote speaker Dr. Mark Orazem. The event runs from 8 a.m. to 8 p.m.

This meeting is dedicated to the memory of the late Prof. Sharon Roscoe, a long-time member of the ECS and a preeminent Nova Scotian electrochemist.

Dr. Mark Orazem (Keynote)

Speakers

Dr. Mark Orazem (Keynote) | Department of Chemical Engineering, University of Florida, USA

Dr. Jacek Lipkowski | Department of Chemistry, University of Guelph, ON, Canada

Dr. Aicheng Chen | Department of Chemistry, Lakehead University, ON, Canada

Dr. David Shoesmith | Department of Chemistry, Western University, ON, Canada

Registration

Registration fees:
Regular attendees: CAD 150
Students and postdoctoral fellows: CAD 50
(to be paid on-site by cash or cheque)

If you wish to present your research, please submit your presentation title and abstract as part of the registration process. Students and PDFs are invited to participate in the poster competition.

The registration deadline is Friday, May 6, 2016.

Register now!

smu-shot

 

 

Experience the wonders of Argonne National Laboratory at this year’s Chicago Section Spring Event! Featuring a laboratory tour, a dinner buffet, and a talk by distinguished speaker Dr. Deyang Qu, this event is not to be missed!

ANL_PMS_P_H

This event will take place on Tuesday, April 5th and begin at 3:30 p.m. Register now!

Argonne National Laboratory

Spanning 1,500 acres, Argonne National Laboratory is the largest national laboratory in the Midwest. Argonne serves as a center for government and corporate research and development, as well as academic collaborations, in the greater Chicago region.

Location

Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439
Directions

Schedule of eventsargonne

3:30 p.m. | Arrival to obtain a visitor pass for Optional Tour | Argonne Information Center

3:40 p.m. | Arrival at Guest House to depart for Optional Tour

3:45-5 p.m. | Depart for Transportation Center & Advanced Photon Source Tour (from Guest House)

5:15-6 p.m. | Dinner Registration & Reception | Guest House

6:00-7 p.m. | Dinner
Buffet choices of: mixed green salad, baked tilapia, grilled herb chicken breast, roasted herb potatoes, green beans and baby carrots, and assorted mini pastries

Prices:
Students and Retired Members: $10
Student Nonmembers: $15
Members: $35
Nonmembers: $45

(more…)

Efficiency of water electrolysis

Together with his team, ECS member Wolfgang Schuhmann develops new electrodes, for the production of hydrogen.
Image: Ruhr Universitaet Bochum

New research out of Ruhr Universitaet Bochum is showing big gains for water electrolysis, with new efficiency levels double that of previous efforts.

By applying a layer of copper atoms in conventional platinum electrodes, researchers were able to desorption easier for the catalyst surface. This system then generated twice the amount of hydrogen than a platinum electrode without a copper layer.

This breakthrough could help water electrolysis gain a better reputation as a method for hydrogen production. Prior to this breakthrough, too much energy was lost in the process to prove it efficient. Now, the efficiency level has been doubled.

This from Ruhr Universitaet Bochum:

The researchers modified the properties of the platinum catalyst surface by applying a layer of copper atoms. With this additional layer, the system generated twice the amount of hydrogen than with a pure platinum electrode. But only if the researchers applied the copper layer directly under the top layer of the platinum atoms. The group observed another useful side effect: the copper layer extended the service life of the electrodes, for example by rendering them more corrosion-resistant.

Read the full article.

“To date, hydrogen has been mainly obtained from fossil fuels, with large CO2 volumes being released in the process,” said Wolfgang Schuhmann, ECS member and lead author of the study. “If we succeeded in obtaining hydrogen by using electrolysis instead, it would be a huge step towards climate-friendly energy conversion. For this purpose, we could utilize surplus electricity, for example generated by wind power.”