Congratulations Graduates!

students

Congratulations to all graduating ECS student members!
Photo from the Student Mixer at the ECS 225th Meeting in Orlando, Florida.

All of us at ECS wish our graduating student members the best on their December commencement!

Seeking employment? Check out the ECS Redcat Job Board for current opportunities.

Changing jobs or moving? We want to know where you are going next! Don’t forget to log into your ECS account and submit a change request for your information.

Any questions or need assistance? Reach out to us at customerservice@electrochem.org.

Happy Holidays!

Member Spotlight – Telpriore “Greg” Tucker

Tucker, a six year ECS member, aims to develop future transportation that is sustainable and fun to use.Credit: Arizona State University

Tucker aims to develop transportation that is sustainable and fun to use.
Credit: Arizona State University

Hard-work and perseverance have paid off for The Electrochemical Society’s Telpriore “Greg” Tucker. From chemist, to mentor, to entrepreneur—the Arizona State University doctoral graduate aims to make an impact in renewable energy and transportation.

With his new degree in hand, Tucker plans to revisit his business plans for The Southwest Battery Bike Company, which focuses on developing electric bicycles that can provide a more affordable and greener source of transportation.

“I’ve always had an interest in transportation and how to make it more affordable and sustainable for the public,” Tucker says. “Since my degree focuses on batteries for renewable energy purposes, I began to see a lot of applications from my research. Some of the best jobs can spring from your hobby or projects that you enjoy doing.”

(more…)

3 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Copper Electrodeposition for Via Filling
Osaka Prefecture University – Sakai, Japan
The researcher will be engaged in the development of new electrodeposition process for three dimensional packaging including TSV process; design copper deposition bath containing appropriate additives and fabricate copper filled deep vias on silicon wafer; use analytical techniques such as cyclic voltammetry, chronoamperometry, SEM, XRD, and so on. Presents of research at international conferences and publish in peer-reviewed journals are encouraged upon approval from collaborating companies and institutes.

(more…)

Member Spotlight – Vilas Pol

Vilas Pol has assisting in discovering a nanoparticle network that could bright fast-charging batteries. He joined the Society in 2012.Credit: Argonne National Laboratory

Vilas Pol has assisted in the discovery of a nanoparticle network that could bring fast-charging batteries. He joined the Society in 2012.
Credit: Argonne National Laboratory

The Electrochemical Society’s Vilas Pol, along with a team of Purdue University researchers, has developed a nanoparticle network that could produce very fast-charging batteries.

This new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes, all by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles.

This from Purdue University:

The researchers have performed experiments with a “porous interconnected” tin-oxide based anode, which has nearly twice the theoretical charging capacity of graphite. The researchers demonstrated that the experimental anode can be charged in 30 minutes and still have a capacity of 430 milliamp hours per gram (mAh g−1), which is greater than the theoretical maximum capacity for graphite when charged slowly over 10 hours.

(more…)

7 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board:

Postdoctoral Research Associate in Chemical Engineering
Case Western Reserve University – Cleveland, Ohio
The Postdoctoral Research Associate will conduct research and development on titanium electrowinning from molten salts. Technical responsibilities will include high-temperature electrochemical reactor design and fabrication, experimental investigations of electrodeposition from molten salts, and some mathematical modeling studies.

(more…)

ECS logoHow can we help you advance your work? Please take just a few minutes to complete our short survey and tell us.

Your input today will help us better serve the digital needs of people like you and the Society’s goal of disseminating the science.

So please take this quick survey now.

All answers will be securely held and only used for aggregate statistical comparisons.

Thank you for helping.

Posted in Membership

3 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board:

Post-Doctoral Research Associate
North Carolina State University – Raleigh, North Carolina
The Postdoctoral Research Associate will focus his/her work on research and development of new lithium-sulfur batteries. The work includes the development of both electrode and electrolyte materials and the integration of these materials into lithium-sulfur batteries. The Postdoctoral Research Associate will be responsible on designing and carrying out experiments, analyzing data, writing reports, and/or help mentoring junior researchers to conduct their research.

(more…)

Member Spotlight – Chanyuan Liu

Chanyuan Liu

Chanyuan Liu, ECS member and Ph.D. student at the University of Maryland, is the lead author on the nanopore study.
Credit: University of Maryland

The Electrochemical Society’s Chanyuan Liu, along with a team of University of Maryland researchers, believe they have developed a structure that could bring about the ultimate miniaturization of energy storage components.

The tiny structure, known as the nanopore, includes all the components of a battery and can be fully charged in 12 minutes and recharged thousands of times.

This from University of Maryland:

The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end. The existing device is a test, but the bitsy battery performs well.

(more…)

Honoring Veterans

ECS Past Presidents

ECS past presidents who were involved with the Manhattan Project. Clockwise starting at the top left: Lyle I. Gilbertson, Walter J. Hamer, Norman Hackerman, Harold J. Read

Here in the home office we are not just honoring U.S. Veterans today. As a society with international membership, we are thinking about the men and women who have served their countries around the world.

We couldn’t help but look into how electrochemistry and solid state science might have shaped a soldier’s life.

It turns out, when you are working for an organization that has been around since 1902 and that cuts across so much of our everyday lives, you have enough material to write a book on any one subject.

Here are just a few nuggets:

(more…)

Member Spotlight – Shelley Minteer

ECS's Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.Credit: Dan Hixson/University of Utah College of Engineering

ECS’s Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.
Credit: Dan Hixson/University of Utah College of Engineering

The Electrochemical Society’s Shelley Minteer and her team of engineers at The University of Utah have developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without need to ignite the fuel.

The new fuel cells will be able to be used to power portable electronics, off-grid power, and sensors.

The study was published in the American Chemical Society journal ACS Catalysis with Minteer as the senior author.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says Minteer. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.”

The standard technique for converting jet fuel to electricity is both difficult, due to the sulfur content, and inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

This from The University of Utah:

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

Read the full article here.

Minteer is a valued member of ECS and is on the editorial board of the Journal of The Electrochemical Society and ECS Electrochemistry Letters – along with being a past chair of the Physical and Analytical Electrochemistry Division. You can also read her published research in our Digital Library.

Make sure to sign up for our e-Alerts so you don’t miss the newest, cutting-edge research!