Fuel CellNitrogen-doped carbon nanotubes or modified graphene nanoribbons could be effective, less costly replacements for expensive platinum in fuel cells, according to a new study.

In fuel cells, platinum is used for fast oxygen reduction, the key reaction that transforms chemical energy into electricity.

The findings come from computer simulations scientists created to see how carbon nanomaterials could be improved for fuel-cell cathodes. Their study reveals the atom-level mechanisms by which doped nanomaterials catalyze oxygen reduction reactions (ORR).

Doping with nitrogen

Boris Yakobson, a professor of materials science and nanoengineering and of chemistry at Rice University, and his colleagues are among many researchers looking for a way to speed up ORR for fuel cells, which were discovered in the 19th century but not widely used until the latter part of the 20th. Fuel cells have since powered transportation modes ranging from cars and buses to spacecraft.

(more…)

Many areas of the United States are at risk for nitrate and nitrite contamination of drinking water due to overuse of agricultural fertilizers. Click to enlarge.
Image: USGS

Researchers have found a catalyst that can clean toxic nitrates from drinking water by converting them into air and water.

“Nitrates come mainly from agricultural runoff, which affects farming communities all over the world,” says lead study scientist Michael Wong, a chemical engineer at Rice University.

“Nitrates are both an environmental problem and health problem because they’re toxic. There are ion-exchange filters that can remove them from water, but these need to be flushed every few months to reuse them, and when that happens, the flushed water just returns a concentrated dose of nitrates right back into the water supply,” he explains.

Wong’s lab specializes in developing nanoparticle-based catalysts, submicroscopic bits of metal that speed up chemical reactions. In 2013, his group showed that tiny gold spheres dotted with specks of palladium could break apart nitrites, the more toxic chemical cousins of nitrates.

(more…)

Chemical Heritage FoundationECS members M. Stanley Whittingham and Yury Gogotsi will be panelists at the upcoming “Electrical Energy Storage Technologies That Enable the Future” symposium, hosted by the Chemical Heritage Foundation. The event will take place on January 11, 2018 in Philadelphia, PA. Read the full program below.

Moderator
Daryl Boudreaux, Principal, Boudreaux & Associates

Panelists
M. Stanley Whittingham, Distinguished Professor of Chemistry and Materials Science and Engineering, SUNY Binghamton

Yury Gogotsi, Distinguished University Professor of Materials Science and Engineering, Drexel University

(more…)

Fuel CellApplying a tiny coating of costly platinum just 1 nanometer thick—about 1/100,000th the width of a human hair—to a core of much cheaper cobalt could bring down the cost of fuel cells.

This microscopic marriage could become a crucial catalyst in new fuel cells that use generate electricity from hydrogen fuel to power cars and other machines. The new fuel cell design would require far less platinum, a very rare metal that sold for almost $900 an ounce the day this article was produced.

“This technique could accelerate our launch out of the fossil-fuel era,” says Chao Wang, an assistant professor of chemical and biomolecular engineering at Johns Hopkins University and senior author of a study published in the journal Nano Letters.

“It will not only reduce the cost of fuel cells,” Wang says. “It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

(more…)

A new flexible, transparent electrical device inspired by electric eels could lead to body-friendly power sources for implanted health monitors and medication dispensers, augmented-reality contact lenses, and countless other applications, researchers report.

The soft cells—made of hydrogel and salt—form the first potentially biocompatible artificial electric organ that generates more than 100 volts. It produces a steady buzz of electricity at high voltage but low current, a bit like an extremely low-volume but high-pressure jet of water. It could be enough to power a small medical device like a pacemaker.

While the technology is preliminary, Michael Mayer, a professor of biophysics at the Adolphe Merkle Institute of the University of Fribourg in Switzerland and the paper’s corresponding author, believes it may one day be useful for powering implantable or wearable devices without the toxicity, bulk, or frequent recharging that come with batteries.

(more…)

BatteryNew research from Sandia National Laboratory is moving toward advancing solid state lithium-ion battery performance in small electronics by identifying major obstacles in how lithium ions flow across battery interfaces.

The team of researchers, including ECS member Forrest Gittleson, looked at the nanoscale chemistry of solid state batteries, focusing on the area where the electrodes and electrolytes make contact.

“The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials,” says Farid El Gabaly, coauthor of the recently published work. “In this project, all of the materials are solid; we don’t have a liquid-solid interface like in traditional lithium-ion batteries.”

According to El Gabaly, the faster the lithium can travel from one electrode to the other, the more efficient the batteries could be.

(more…)

Transforming Carbon Dioxide

Carbon dioxideCarbon dioxide accounts for over 80 percent of all greenhouse gas emissions. For many, carbon dioxide emissions account for significant environmental issues, but for researchers like Haotian Wang of Harvard University, carbon dioxide could be the perfect raw material.

According to a new study, Wang and his team are well on the way to developing a system that uses renewable electricity to electrochemically transform carbon dioxide into carbon monoxide. The carbon monoxide could then be used in a host of industrial processes, such as plastics production, creating hydrocarbon products, or as a fuel itself.

This from Harvard University:

The energy conversion efficiency from sunlight to CO can be as high as 12.7%, more than one order of magnitude higher than natural photosynthesis.

(more…)

Researchers have developed a prototype device that mimics natural photosynthesis to produce ethylene gas using only sunlight, water, and carbon dioxide.

The novel method, which produces ethylene at room temperature and pressure using benign chemicals, could be scaled up to provide a more eco-friendly and sustainable alternative to the current method of ethylene production.

Ethylene, which is the building block of polyethylene, is an important chemical feedstock produced in large quantities for manufacturing plastics, rubber, and fibers. More than 170 million tons of ethylene were produced worldwide in 2015 alone, and the global demand is expected to exceed 220 million tons by 2020.

(more…)

BiofuelNew research stitches together the best parts of several different bacteria to synthesize a new biofuel product that matches current engines better than previously produced biofuels.

“My lab is interested in developing microbial biosynthetic processes to make biofuels, chemicals, and materials with tailored structures and properties,” says Fuzhong Zhang, associate professor at the School of Engineering & Applied Science at Washington University in St. Louis. “Previously, we engineered E.coli to produce a precursor compound that leads to the production of advanced biofuels. In this work, we took the next step toward the actual manufacture.”

Zhang’s research focuses on engineering metabolic pathways that, when optimized, allow the bacteria to act as a biofuel generator. In its latest findings, recently published in Biotechnology for Biofuels, Zhang’s lab used the best bits of several other species—including a well-known pathogen—to enable E. coli to produce branched, long-chain fatty alcohol (BLFL), a substance that can be used as a freeze-resistant, liquid biofuel.

(more…)

Poplar treeNew research indicates that poplar trees could be an economically viable biofuel material.

In the quest to produce affordable biofuels, poplars are one of the Pacific Northwest’s best bets—the trees are abundant, fast-growing, adaptable to many terrains, and their wood can become substances used in biofuel and high-value chemicals that we rely on in our daily lives.

But even as researchers test poplars’ potential to morph into everything from ethanol to chemicals in cosmetics and detergents, a commercial-scale processing plant for poplars has yet to be achieved. This is mainly because production costs still are not competitive with the current price of oil.

Now, a team of researchers is trying to make poplar a viable competitor by testing the production of younger poplar trees that could be harvested more frequently—after only two or three years—instead of the usual 10- to 20-year cycle.

(more…)