Every year on March 22, people around the globe celebrate World Water Day to advocate for improved access to clean water internationally. To date, there are over 663 million people living without a safe water supply close to home, leading to families spending countless hours retrieving water from distant sources or coping with the health impacts of using contaminated water.

This year, the theme of World Water Day is “Wastewater.” According to the World Health Organization, over 80 percent of wastewater flows back into nature, polluting the environment and wasting what could be a recycled resource. By exploring wastewater and finding ways to safely manage and recycle it, a sustainable source of water, energy, and nutrients could be recovered.

Critical gaps in water and sanitation

For ECS members, wastewater treatment and efforts to improve access to clean water in the developing world is familiar territory.

In 2014, ECS partnered with the Bill & Melinda Gates Foundation to establish the first Science for Solving Society’s Problems challenge, leveraging the brainpower of scientists from around the world to create innovative solutions to some of the most pressing problems in global water and sanitation.

(more…)

Carbon dioxideChemists have engineered a molecule that uses light or electricity to convert carbon dioxide into carbon monoxide—a carbon-neutral fuel source—more efficiently than any other method of “carbon reduction.”

“If you can create an efficient enough molecule for this reaction, it will produce energy that is free and storable in the form of fuels,” says study leader and Liang-shi Li, associate professor in the chemistry department at Indiana University Bloomington. “This study is a major leap in that direction.”

Burning fuel—such as carbon monoxide—produces carbon dioxide and releases energy. Turning carbon dioxide back into fuel requires at least the same amount of energy. A major goal among scientists has been decreasing the excess energy needed.

This is exactly what Li’s molecule achieves: requiring the least amount of energy reported thus far to drive the formation of carbon monoxide. The molecule—a nanographene-rhenium complex connected via an organic compound known as bipyridine—triggers a highly efficient reaction that converts carbon dioxide to carbon monoxide.

The ability to efficiently and exclusively create carbon monoxide is significant due to the molecule’s versatility.

(more…)

BatteryReports of a woman’s headphones catching fire while on a flight from Bejing to Melbourne has once again heightened interest in lithium-ion battery safety. According to the Australian Transport Safety Bureau, the incident occurred while the woman was sleeping mid-flight wearing battery-powered headphones.

Early in 2016, battery expert and ECS fellow, K.M. Abraham, talked to ECS about lithium-ion battery safety concerns amidst reports of exploding hoverboards. Below are some excerpts of what he had to say.

“It is safe to say that these well-publicized hazardous events are rooted in the uncontrolled release of the large amount of energy stored in lithium-ion batteries as a result of manufacturing defects, inferior active and inactive materials used to build cells and battery packs, substandard manufacturing and quality control practices by a small fraction of cell manufacturers, and user abuses of overcharge and over-discharge, short-circuit, external thermal shocks and violent mechanical impacts,” Abraham told ECS. “All of these mistreatments can lead lithium-ion batteries to thermal runaway reactions accompanied by the release of hot combustible organic solvents which catch fire upon contact with oxygen in the atmosphere.”

Read Abraham’s full article.

(more…)

BatteryOne of the keys to developing a successful electric vehicle relies on energy storage technology. For an EV to be successful in the marketplace, it must be able to travel longer distances (i.e. over 300 miles on a single charge).

A team of researchers from Georgia Institute of Technology, including ECS fellow Meilin Liu, has recently created a nanofiber that they believe could enable the next generation of rechargeable batteries, and with it, EVs. The recently published research describes the team’s development of double perovskite nanofibers that can be used as highly efficient catalysts in fast oxygen evolution reactions. Improvements in this key process could open new possibilities for metal-air batteries.

“Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries,” Liu says. “The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process.”

(more…)

BatteryTaking a detailed look inside energy storage systems could help solve potential issues before they arise. A team of researchers from Brookhaven National Laboratory are doing just that by imaging the inner workings of a sodium-metal sulfide battery, leading them to understand the cause of degraded performance.

“We discovered that the loss in battery capacity is largely the result of sodium ions entering and leaving iron sulfide—the battery electrode material we studied—during the first charge/discharge cycle,” says Jun Wang, co-author of the study. “The electrochemical reactions involved cause irreversible changes in the microstructure and chemical composition of iron sulfide, which has a high theoretical energy density. By identifying the underlying mechanism limiting its performance, we seek to improve its real energy density.”

Performance degradation in charge/discharge cycles has been the main problem researchers encounter when pursuing sodium-ion battery research. While the battery’s performance points to degradation issues, not much was previously known about what caused this degradation.

(more…)

Renewable liquid fuelA team of researchers from Texas A&M University is looking to take the negative impact of excessive levels of carbon dioxide in the atmosphere and turn it into a positive with renewable hydrocarbon fuels.

Greenhouse gasses trap heat in the atmosphere and therefore impact global temperatures, making the planet warmer. Carbon dioxide, the most common greenhouse gas, is emitted into the atmosphere upon burning fossil fuels, solid waste, and wood products, and makes up 81 percent of all greenhouse gas emissions in the U.S.

“We’re essentially trying to convert CO2 and water, with the use of the sun, into solar fuels in a process called artificial photosynthesis,” says Ying Li, principal investigator and ECS member. “In this process, the photo-catalyst material has some unique properties and acts as a semiconductor, absorbing the sunlight which excites the electrons in the semiconductor and gives them the electric potential to reduce water and CO2 into carbon monoxide and hydrogen, which together can be converted to liquid hydrocarbon fuels.”

This from Texas A&M University:

The first step of the process involves capturing CO2 from emissions sources such as power plants that contribute to one-third of the global carbon emissions. As of yet, there is no technology capable of capturing the CO2, and at the same time re-converting it back into a fuel source that isn’t expensive. The material, which is a hybrid of titanium oxide and magnesium oxide, uses the magnesium oxide to absorb the CO2 and the titanium oxide to act as the photo-catalyst, generating electrons through sunlight that interact with the absorbed CO2 and water to generate the fuel.

(more…)

25 Years of Lithium-ion Batteries

Focus IssuesIn June 2016, the International Meeting on Lithium Batteries (IMLB) in Chicago successfully celebrated 25 years of the commercialization of lithium-ion batteries. According to Doron Aurbach, technical editor of the Batteries and Energy Storage topical interest area of the Journal of The Electrochemical Society, research efforts in the Li-battery community continues to provide ground-breaking technological success in electromobility and grid storage applications. He hopes this research will continue to revolutionize mobile energy supply for future advances in ground transportation.

ECS has published 66 papers for a new IMLB focus issue in the Journal of The Electrochemical Society. All papers are open access at no charge to the authors and no charge to download thanks to ECS’s Free the Science initiative!

(READ: Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries)

The focus issue provides important information on the forefront of advanced battery research that appropriately reflects the findings from the symposium.

(more…)

John Goodenough may be 94-years old, but he shows no sign of slowing down. Now, the co-inventor of the lithium-ion battery has developed the first all-solid-state battery cells that could result in safer, longer-lasting batteries for everything from electric cars to grid energy storage.

“Cost, safety, energy density, rates of charge and discharge and cycle life are critical for battery-driven cars to be more widely adopted,” Goodenough says in a statement. “We believe our discovery solves many of the problems that are inherent in today’s batteries.”

(more…)

By: Venkat Subramanian, University of Washington

This article refers to a recently published open access paper in the Journal of The Electrochemical Society, “Direct, Efficient, and Real-Time Simulation of Physics-Based Battery Models for Stand-Alone PV-Battery Microgrids.”

Renwable grid controlTesla engineered a good electric car successfully by engineering a car design that can accommodate large battery stacks. Our hypothesis is that the current grid control method, which is a derivative of traditional grid control approaches, cannot utilize batteries efficiently.

In the current microgrid control, batteries are treated as “slaves” and are typically expected to be available to meet only the power needs. Typically, if grid optimization is done at the higher level, and then batteries are used as slaves, including models that predict fade can be used in a bi-level optimization mode (optimize grid operations and at every point in time, optimize battery operation). This way of optimization will not yield the best possible outcome for batteries.

In a recently published paper, we show that real-time simulation of the entire microgrid is possible in real-time. We wrote down all of the microgrid equations in mathematical form, including photovoltaic (PV) arrays, PV maximum power point tracking (MPPT) controllers, batteries, and power electronics, and then identified an efficient way to solve them simultaneously with battery models. The proposed approach improves the performance of the overall microgrid system, considering the batteries as collaborators on par with the entire microgrid components. It is our hope that this paper will change the current perception among the grid community.

(more…)

New Options for Grid Energy Storage

Energy storageResearchers from Oregon State university have developed the first battery that uses only hydronium ions as the charge carrier, which the team believes could yield promising results for the future of sustainable energy storage.

Particularly, the researchers are interested in the area of stationary storage. This type of energy storage primarily refers to on-grid storage to harness power from intermittent sources, such as wind or solar, for later use in general distribution. Stationary energy storage is vital for the energy landscape to transition to more renewable types of energy because it will allow the electrical grid to continue to function when the sun goes down and the wind stops blowing.

This from Oregon State University:

Hydronium, also known as H3O+, is a positively charged ion produced when a proton is added to a water molecule. Researchers in the OSU College of Science have demonstrated that hydronium ions can be reversibly stored in an electrode material consisting of perylenetetracarboxylic dianhydridem, or PTCDA.

(more…)