BiofuelBiofuels have become a promising potential alternative for traditional fossil fuels. However, producing biofules only make sense if the greenhouse gasses emitted are less than other means of producing energy.

According to new research, sugarcane and nepiegrass could be two of the most promising candidates for biofuel production due to their ability to isolate more carbon dioxide in the soil than is lost in the atmosphere.

Sugarcane and nepiegrass both have large carbon-storing root biomass that can offset the carbon dioxide emitted during cultivation. To test this, researchers observed these plants in Hawaii over a two year period, measuring both the above- and below-ground biomass and resulting greenhouse gas flux.

(more…)

Carbon dioxideGlobally, carbon dioxide in the number one contributor to harmful greenhouse gas emissions. These emissions have been linked to the acceleration of climate change, leading to such devastating effects as rising sea levels that displace communities and radical local climates that hurt agriculture.

But what is you could turn that CO2 into baking powder?

That’s what one company in India is setting out to do. A chemical plant in the city of Tuticorin is teaming up with India’s Carbon Clean Solutions to save 60,000 tons of last year’s CO2 emissions.

“I am a businessman. I never thought about saving the planet,” says Ramachadran Gopalan, owner of the plant that is capturing CO2 from coal-powered boilers, to BBC Radio 4. “I needed a reliable stream of CO2, and this was the best way of getting it.”

While Gopalan may not have thought about saving planet, the team at Carbon Clean Solutions has.

(more…)

Renewable liquid fuelRenewable energy is on the rise, but how we store that energy is still up for debate.

“Renewable energy is growing, but it’s intermittent,” says Grigorii Soloveichik, program director at the United States Department of Energy’s Advanced Research Projects Agency. “That means we need to store that energy and we have two ways to do that: electricity or liquid fuels.”

According to Soloveichik, electricity and batteries are sufficient for short term energy storage, but new technologies such as liquid fuels derived from renewable energy must be considered for long term storage.

During the PRiME 2016 meeting in October, Soloveichik presented a talk titled, “Development of Transformational Technologies,” where he described the advantages that carbon neutral liquid fuels have over other convention means – such as batteries – for efficient, affordable, long term storage for renewable energy sources.

Rise of renewables

In the United States, 16.9 percent of electricity generation comes from renewables – a 9.3 percent increase since 2015. Globally, climate talks such as the Paris Agreement help bolster the rise of renewable energy around the world. Soloveichik expects that growth to continue in light of the affordability of clean energy technologies and government mandates that aim at environmental protection and a reduction of the carbon footprint. However, the continued rise in renewable dependence will impact the current grid infrastructure.

“More renewables will result in more stress on the grid,” Soloveichik says. “All of these new sources are intermittent, so we need to be able to store huge amounts of energy.”

(more…)

France Builds First Solar Road

Solar roadRecent trends in solar technology have led to transforming mundane surface to energy harvesting powerhouses. First, Elon Musk proposed his new solar roof. Now, rural France is taking a page from that book with the recent paving of paths with solar panels.

The solar road is part of the Wattway projects, which aims to pave nearly 3,000 roadways with solar panel tiles.

According to reports, the 1 kilometer road will produce 767 kWh hours of electricity every day. Because the panels are flat, the amount of energy produced is limited. However, the energy generated is enough to power an average family home for one year.

“We are still experimenting with Wattway,” says Jean-Charles Broizat, CEO of Wattway, in a statement. “Building an application site of this magnitude is a real opportunity for our innovation. This application site has enabled us to improve our process of installing photovoltaic panels as well as their manufacture, in order to optimize our solution as best as possible.”

Hitting the 100% Renewable Mark

Las Vegas renewable energyFor the last decade, the city of Las Vegas has been working toward generating 100 percent of its energy from renewable source. Now, city officials state that goal has been met.

About one year ago, the city partnered with the company NV Energy, a public utility that distributes energy across the state of Nevada, to help Las Vegas reach its clean energy goal. NV Energy official recently announced that everything from City Hall to community centers are now running on clean energy after the finalization of Boulder Solar 1.

The Boulder Solar plant was built by California sustainable energy company SunPower. The 100-megawatt solar plant is located in the Eldorado Valley of Boulder City, NV.

Las Vegas’ major, Carolyn Goodman, hopes that this move will but the city on the path to be a “world leader in sustainability.”

Battery Research for Higher Voltages

BatteryLithium-ion batteries supply billions of portable devices with energy. While current Li-ion battery designs may be sufficient for applications such as smartphones and tablets, the rise of electric vehicles and power storage systems demands new battery technology with new electrode materials and electrolytes.

ECS student member Michael Metzger is looking to address that issue by developing a new battery test cell that can investigate anionic and cationic reactions separately.

Along with Benjamin Strehle, Sophie Slochenbach, and ECS Fellow Hubert A. Gasteiger, Metzger and company published their new findings in the Journal of The Elechemical Society in two open access papers.

(READ: “Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation” and “Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions“)

“Manufacturers of rechargeable batteries are building on the proven lithium-ion technology, which has been deployed in mobile devices like laptops and cell phones for many years,” says Metzger, the 2016 recipient of ECS’s Herbert H. Uhlig Summer Fellowship. “However, the challenge of adapting this technology to the demands of electromobility and stationary electric power storage is not trivial.”

(more…)

EnergyBill Gates is taking climate change head on with his newly formed Breakthrough Energy Ventures fund. Gates is leading the fund along with a network of investors worth $170 billion, including Virgin’s Richard Branson and Amazon’s Jeff Bezos.

BEV will donate more than $1 billion into clean energy innovation projects over the next 20 years, focusing on its goal of reducing greenhouse gas emissions.

“Anything that leads to cheap, clean, reliable energy we’re open-minded to,” Gates says.

This move by Gates comes after his commitment last year to personally invest an additional $1 billion into clean energy.

However, this move will shift Gates away from his home turf of information technology.

“People think you can just put $50 million in and wait two years and then you know what you got,” Gates says. “In this energy space, that’s not true at all.”

A driving force behind the fund is to take innovative new technologies from the lab to the marketplace. Currently, the federal government funds a huge percentage of fundamental research efforts in fields such as energy storage, which are the subsequently commercialized by private investors.

(more…)

Flow batteryA team of researchers at Case Western Reserve University is building a flow battery prototype to provide cleaner, cheaper power.

The team, co-led by ECS member Bob Savinell, is working to scale up the technology in order develop a practical, efficient energy storage device that can store excess electricity and potentially augment the grid in light of a shift toward renewables.

With a $1.17 million federal grant, the team has started to build a 1-kilowatt prototype with enough power to run various, high-powered household devices for six hours.

“Intermittent energy sources, such as solar and wind, combined with traditional sources of coal and nuclear power, are powering the grid. To meet peak demand, we often use less-efficient coal or gas-powered turbines,” says Savinell, ECS Fellow and editor of the Journal of The Electrochemical Society. “But if we can store excess energy and make it available at peak use, we can increase the overall efficiency and decrease the amount of carbon dioxide emitted and lower the cost of electricity.”

One of the biggest barriers preventing the large-scale use of electrochemical energy storage devices has been the cost. To address this, Savinell and his team have been developing the flow battery with cheaper materials, such as iron and water.

(more…)

SmartphoneRecent safety concerns with lithium-ion batteries exploding in devices such as the Samsung Galaxy Note 7 phone and hoverboards have many energy researchers looking into this phenomenon for a better understanding of how batteries function when stressed.

A new open access paper published in the Journal of The Electrochemical Society provides some insight into these safety hazards associated with the Li-ion battery by taking a look inside the battery as it is overworked and overcharged.

Overcharging or overheating Li-ion batteries causes the materials inside to breakdown and produce bubbles of oxygen, carbon dioxide, and other gases. As more of these gases are produced, they begin to buildup and cause the battery to swell. That swelling can lead to explosion.

“The battery can either pillow a small amount and keep operating, pillow a lot and cease operation, or keep generating gas and rupture the cell, which can be accompanied by an explosion or fire,” Toby Bond, co-author of the paper, told New Scientist.

(more…)

After a short hiatus, Clean Technica’s Celantech Talk podcast has returned. For their first episode back, ECS member and podcast co-host Matthew Klippenstein discusses speed bumps in renewable energy, transforming the grid, and the demise of diesel.

Klippenstein is a 13 year veteran of the fuel cell industry with Ballard Power Systems. He was part of the 2007 group that received ECS’s Industrial Electrochemistry and Electrochemical Engineering Division New Electrochemical Technology Award, which has recognized significant advances in industrial electrochemistry since 1997. Listen to the podcast below.

PS: To learn more about science and some of the key contributors, download the ECS Podcast for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.