Wind TurbinesGoogle is going green.

Tech giant Google announced that it will run entirely on renewable energy in 2017. This will be a huge shift for the company that, according to the New York Times, consumed as much energy as the city of San Francisco in previous years.

Google states that both its data centers and offices will reach the 100 percent renewable energy mark in 2017, with the majority of power derived from wind and solar. According to a press release by the company, going green makes the most sense economically in addition to Google’s goal of reducing its carbon footprint to zero. With wind energy prices down 60 percent and solar down 80 percent over the past six years, Google’s move to renewables will both make an environmental impact and help the company cut operating expenses.

In part, Google is able to make this transition due to the number of large-scale deals the company has made with renewable energy producers over the past few years. Google has guaranteed to purchase energy from renewable start-ups, which then allows those start-ups to obtain the capital necessary to expand their business.

“We are the largest corporate purchaser of renewable energy in the world,” Joe Kava, Google’s senior vice president of technical infrastructure, told the New York Times. “It’s good for the economy, good for business and good for our shareholders.”

(more…)

How to Make Solar Work

Solar energyGlobal energy demands are predicted to reach 46 terawatts by 2100. That number is a far reach from the 18 terawatts of energy currently generated around the world. According to one expert in the field, a major shift in the way we produce and consume energy is necessary in order to meet future demands.

Meng Tao, ECS member and Arizona State University professor, discussed how society could move toward meeting those demands at the PRiME 2016 meeting, where he presented his paper, “Terawatt Solar Photovoltaics: Roadblocks and Our Approaches.”

“We just cannot continue to consume fossil fuels the way we have for the last 200 years,” Tao told ECS. “We have to move from a fossil fuel infrastructure to a renewable infrastructure.”

For Tao, the world’s society cannot set on a path of “business as usual” by producing energy via coal, oil, and natural gas. And while solar energy has experienced a growth rate of nearly 45 percent in the last decade, it still only accounts for less than one percent of all electricity generated.

The shift to solar

Historically, solar technology soars when oil prices are at their highest. This is especially true during the oil embargo of the 1970s. During that time, private and public investments began to shift away from fossil fuels and toward solar and other renewable energies. That trend emerged again in the early 2000s when oil prices skyrocketed to a record-setting $140 per barrel.

“In the 1970s, the motivation to invest in solar and other forms of renewable energy was geopolitical,” Tao says. “Now, that motivation tends to focus more on the environment and sustainability.”

(more…)

Electric vehicleJust over ten years ago, the number of electric vehicles on the road could be counted in the hundreds. Now, more than 1.3 million EVs have been deployed across the globe. But even as EVs become a stronger force in the transportation sector, many buyers still cite one major deterrent in going electric: range anxiety.

Range anxiety refers to the fear that during longer trips, the EV battery may run out of energy and leave drivers stranded without a charging station. However, Ford, BMW, and VW are planning to but this fear to rest in Europe where they’re planning to develop a networking of charging stations along major highways.

The car companies believe this implementation of these stations will help enable long-rage travel and facilitate the mass-market adoption of EVs. Because current EVs cannot exceed a 300 mile driving range on single charge, the establishment of ultra-fast charging stations will help take away some of the anxiety drivers feel behind the wheel.

(more…)

Powin Energy, a company focused on creating dynamic energy storage solutions, recently announced their plan to install a 30 kW/40 kW-hour battery system at the University of Washington’s Washington Clean Energy Testbeds. The testbed facility was developed by UW to scale-up, prototype, test, and validate new clean energy solutions. Powin Energy hopes to assist the researchers at the facility in their quest to develop clean energy innovation.

“We’re excited about this installation at the University of Washington because it will give our technology a more rigorous workout than most real-world installations that don’t approach the far ends of usage parameters,” Virgil Beaston, CTO of Powin Energy, said in a statement.

Venkat Subramanian, technical editor of the Journal of The Electrochemical Society and UW professor, discussed this energy storage opportunity, stating the he and his team could “use the Powin BESS to measure the performance of energy devices and algorithms when integrated into real and simulated system environments.”

Powin’s partnership with UW comes after the company’s development of its newly patented Battery Pack Operating system, which was designed to make its way into the utility-scale storage market. The company has already installed a 2MW/8MW-hour battery system in Irvine, CA.

PhotosynthesisResearchers from the University of California, Riverside recently combined photosynthesis and physics to make a key discovery that could lead to highly efficient solar cells.

Nathan Gabor, a physicist, began exploring photosynthesis when he asked himself a fundamental question in 2010: Why are plants green? This question probed him to combine his physics training with biology.
Over the past six years, Gabor has been rethinking energy conversion in light of these questions. His goal was to make solar cells that more efficiently absorb intermittent energy from the sun and increase past the current 20 percent efficiency. In this, he was inspired by the plants that had evolved over time to do exactly what he hoped solar cells would be able to do.

This from University of California, Riverside:

[The scientists] addressed the problem by designing a new type of quantum heat engine photocell, which helps manipulate the flow of energy in solar cells. The design incorporates a heat engine photocell that absorbs photons from the sun and converts the photon energy into electricity.

Surprisingly, the researchers found that the quantum heat engine photocell could regulate solar power conversion without requiring active feedback or adaptive control mechanisms. In conventional photovoltaic technology, which is used on rooftops and solar farms today, fluctuations in solar power must be suppressed by voltage converters and feedback controllers, which dramatically reduce the overall efficiency.

Read the full article.

At the core of the research, Gabor and his team are looking to connect quantum mechanical structure to the greenest plants.

According to scientists at the University at Buffalo, a new glowing dye called BODIPY could be a central part of the liquid-based batteries that researchers are looking at to power our cars and homes.

BODIPY – or boron-dipyrromethene – is a fluorescent material that researchers believe could be an ideal material for stockpiling energy.

While the dye is fluorescent, that’s not what initially attracted scientists. According to new research, the dye has chemical properties that enables it to store electrons and participate in electron transfer. These two properties are critical for energy storage.

The new research shows that BODIPY-based batteries operate efficiently and display promising potential for longevity, functioning for more than 100 charge cycles.

“As the world becomes more reliant on alternative energy sources, one of the huge questions we have is, ‘How do we store energy?’ What happens when the sun goes down at night, or when the wind stops?” says lead researcher Timothy Cook, ECS member and assistant professor of chemistry at the University at Buffalo. “All these energy sources are intermittent, so we need batteries that can store enough energy to power the average house.”

By: Blair Trewin, World Meteorological Organization

Global temperature anomalies (difference from 1961-90 average) for 1950 to 2016, showing strong El Niño and La Niña years, and years when climate was affected by volcanoes. Image: World Meteorological Organization

Global temperature anomalies (difference from 1961-90 average) for 1950 to 2016, showing strong El Niño and La Niña years, and years when climate was affected by volcanoes. (Click to enlarge.)
Image: World Meteorological Organization

2016 is set to be the world’s hottest year on record. According to the World Meteorological Organization’s preliminary statement on the global climate for 2016, global temperatures for January to September were 0.88°C above the long-term (1961-90) average, 0.11°C above the record set last year, and about 1.2°C above pre-industrial levels.

While the year is not yet over, the final weeks of 2016 would need to be the coldest of the 21st century for 2016’s final number to drop below last year’s.

Record-setting temperatures in 2016 came as no real surprise. Global temperatures continue to rise at a rate of 0.10-0.15°C per decade, and over the five years from 2011 to 2015 they averaged 0.59°C above the 1961-1990 average.

Giving temperatures a further boost this year was the very strong El Niño event of 2015−16. As we saw in 1998, global temperatures in years where the year starts with a strong El Niño are typically 0.1-0.2°C warmer than the years either side of them, and 2016 is following the same script.

Almost everywhere was warm

Warmth covered almost the entire world in 2016, but was most significant in high latitudes of the Northern Hemisphere. Some parts of the Russian Arctic have been a remarkable 6-7°C above average for the year, while Alaska is having its warmest year on record by more than a degree.

Almost the whole Northern Hemisphere north of the tropics has been at least 1°C above average. North America and Asia are both having their warmest year on record, with Africa, Europe and Oceania close to record levels. The only significant land areas which are having a cooler-than-normal year are northern and central Argentina, and parts of southern Western Australia.

(more…)

What’s Next for Batteries

BatteryTwenty-sixteen marked the 25th anniversary of the commercialization of the lithium-ion battery. Since Sony’s move to commercialize the technology in 1991, the clunky electronics that were made possible by the development of the transistor have become sleek, portable devices that play an integral role in our daily lives – thanks in large part to the Li-ion battery.

“There would be no electronic portable device revolution without the lithium-ion battery,” Robert Kostecki, past chair of ECS’s Battery Division and staff scientist at Lawrence Berkeley National Laboratory, tells ECS.

Impact of Li-ion technology

Without Li-ion batteries, we wouldn’t have smartphones, tablets, or laptops – more so, electric vehicles would have a slim chance of competing in the transportation sector and dreams of large-scale energy storage for a renewable grid may be dashed. Without the Li-ion, there would be no Tesla. There would be no Apple. The landscape of Silicon Valley as we know it today would be vastly different.

While the battery may have hit the marketplace in the early ‘90s, pioneers such as Stanley Whittingham, Michael Thackeray, John Goodenough, and others began pushing the technology in the ‘70s and ‘80s.

In its initial years, Li-ion battery technology boomed. As the field gained more interest from researchers after commercialization, developments started pouring in that doubled, or in some cases, tripled the amount of energy the battery was able to store. While progress continued over the years, the pace began to slow. Incremental advances at the fundamental level opened new paths for small, portable electronics, but have not answered demands for large-scale grid storage or an electric vehicle battery that will allow for a drive range of over 300 miles on a single charge.

(more…)

By: Pep Canadell, CSIRO; Corinne Le Quéré, University of East Anglia; Glen Peters, Center for International Climate and Environment Research – Oslo, and Rob Jackson, Stanford University

Carbon dioxideFor the third year in a row, global carbon dioxide emissions from fossil fuels and industry have barely grown, while the global economy has continued to grow strongly. This level of decoupling of carbon emissions from global economic growth is unprecedented.

Global CO₂ emissions from the combustion of fossil fuels and industry (including cement production) were 36.3 billion tonnes in 2015, the same as in 2014, and are projected to rise by only 0.2% in 2016 to reach 36.4 billion tonnes. This is a remarkable departure from emissions growth rates of 2.3% for the previous decade, and more than 3% during the 2000s.

Given this good news, we have an extraordinary opportunity to extend the changes that have driven the slowdown and spark the great decline in emissions needed to stabilise the world’s climate.

This result is part of the annual carbon assessment released today by the Global Carbon Project, a global consortium of scientists and think tanks under the umbrella of Future Earth and sponsored by institutions from around the world.

(more…)

Steve Martin

ECS member Steve Martin receives a $2.5M grant to pursue research in glassy solids.
Image: Christopher Gannon

The world relies on battery power. The smartphone market alone – which is powered by lithium-ion batteries – is expected to reach 1.5B units in 2016. ECS member Steve Martin believes he may be able to take those batteries to the next level through efforts in glassy solids.

Martin, a professor at Iowa State University and associate of the U.S. Department of Energy’s Ames Laboratory, has been in the field of battery research for over 30 years. Throughout that time, his main focus of research has shifted to measuring the basic properties of glassy solids and trying to understand how their ions move and the thermal and chemical stability.

Martin believes that using glass solids as the electrolytes in batteries would make them safer and more powerful. This is an effort to diverge from traditional liquid-electrolyte batteries, which have experienced issues with safety and energy capacity.

To push this research, Martin recently received a three-year, $2.5M grant from the DOE.

“This is my dream-come-true project,” Martin says. “This is what I’ve been working on for 36 years.”

(more…)