Wind TurbinesRenewable energy efforts around the world have grown exponentially over the past few years. Countries such as Japan have developed the world’s largest floating solar project, initiatives like Solar Hope are working to provide clean energy to sub-Saharan Africa, and Hawaii is leading the charge in the U.S. with its commitment to 100 percent clean energy by 2045. Now, the Netherlands has marked a new milestone in renewables by implementing a total of 2,200 wind turbines.

According to Dutch News, the turbines in the Netherlands produce enough energy to power 2.4 million households.

However, the 3,379 megawatts of power produced by the turbines is only a third of what the Netherlands needs to meet the European Unions’ energy 2023 energy targets. But Gijs van Kuik, head of the Wind Energy Institute at Delft University, believes that the Netherlands is still on track to meet these goals due to recent developments in offshore wind farms.

By: Mark Barteau, University of Michigan

OilPresident…Donald…Trump. For those on both sides of the aisle who vowed “Never Trump!,” that’s going to take some getting used to. On this morning after a stunning election, the first impulse may be to describe the future in apocalyptic phrases. Game over for the climate! Game over for NATO! Game over for the Clean Power Plan! Game over for Planned Parenthood!

While there are certainly extreme outcomes possible for these and many other issues that divide our nation, we may see some moderation, especially on matters where the divisions do not rigidly follow ideological fault lines.

Of course, the president-elect himself is famous neither for hewing to right wing orthodoxy nor for consistency between his various pronouncements. As he has said: “I like to be unpredictable.”

But make no mistake, in the energy and climate space Trump’s number one priority is to dismantle the Obama legacy as he sees it. And he sees it largely through the lens of organizations like the U.S. Chamber of Commerce and the American Petroleum Institute, pro-fossil fuel organizations severely allergic to regulations.

A prime target is the Environmental Protection Agency and its regulation of greenhouse gases via the Clean Power Plan and methane emissions measures, which are described as “job killers.”

Fossil fuel revolution

The Clean Power Plan, which sets limits on carbon emissions from power plants, has been stayed by the courts for the moment, but one should not forget that EPA’s responsibility to regulate CO2 emissions under the Clean Air Act was affirmed by the Supreme Court. This sets up a potential conflict among the executive, legislative and judicial branches.

President Trump and a Republican-controlled Congress may hollow out and handcuff the EPA, but EPA’s responsibility to regulate greenhouse gases will remain unless existing law is modified by Congress or by a Court returned to full strength with Trump appointees.

(more…)

Lithium-ion

The Samsung Galaxy Note 7 has recently been in the headlines for safety concerns pertaining to its lithium-ion battery. Now, a lawsuit filed in California claims that the issues extend beyond the Note 7, and that many other generations of Samsung smartphones “pose a risk of overheating, fire, and explosion.”

While Samsung claims that the Li-ion safety issues are isolated to only the Note 7, researchers in the field of energy storage are still looking for a way to develop an efficient, non-combustible battery. CBS recently stopped by the University of Maryland to discuss just that with ECS member Erich Wachsman.

Watch the full CBS interview.

In an effort to build safer batteries, Wachsman and his group at the University of Maryland are focusing their research efforts on lithium conducting ceramic discs, which can handle thousands of degrees without any issues.

“Because it’s ceramic, it’s actually not flammable,” says Wachsman, director of the university’s Energy Research Center. “You cannot burn ceramic.”

(MORE: Listen to Wachsman discuss his work in water and sanitation.)

Since the rise of Li-ion battery safety in the news, Wachsman’s research has received more attention from industry. He and his group are currently working on scaling up the technology.

Last week, EV superpower Tesla announced its latest product: roof tiles with built-in solar cells. By merging technological performance with aesthetics, Tesla hopes to offer consumers solutions to make their homes more energy self-sufficient.

Using PV roofing material instead of traditional rooftop solar panels helps the company consolidate costs. According to Tesla CEO Elon Musk, there are between four and five million new roofs constructed in the United States each year, which gives him a broad market.

Musk says that the roof tiles have the potential to integrate with Tesla’s Powerwall battery as well as the company’s electric cars, providing customers new, interconnected energy experiences. The CEO claims that roofs made from the new solar material would last up to three times as long as a typical 20-year-cycle roof and be more impact resistant.

However, critics of Tesla’s latest move highlight potential issues related to many different factors, including: location, energy storage capabilities, the practicality and cost of replacing a roof, and the difficulty in integrating PV technology into infrastructure. Tesla has not specified the technology behind their solar cells, but have claimed that they achieve 98 percent of the efficiency of traditional solar panels.

ECS Podcast – The Battery Guys

This year marks the 25th anniversary of the commercialization of the lithium-ion battery. To celebrate, we sat down with some of the inventors and pioneers of Li-ion battery technology at the PRiME 2016 meeting.

Speakers John Goodenough (University of Texas at Austin), Stanley Whittingham (Binghamton University), Michael Thackeray (Argonne National Laboratory), Zempachi Ogumi (Kyoto University), and Martin Winter (Univeristy of Muenster) discuss how the Li-ion battery got its start and the impact it has had on society.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Electric VehiclesIn 2005, the number of electric vehicles on the road could be measured in the hundreds. Over the years, researchers have made technological leaps in the field of EVs. Now, we’ve exceeded a global threshold of one million EVs, and the demand continues to grow.

However, the ultimate success and growth of the EV hinges on battery technology. With some scientists stating that convention Li-ion batteries are approaching their theoretical energy density limits, researchers have begun exploring new energy storage technologies.

ECS member Qiang Zhang is one researcher focusing on technologies beyond Li-ion, specifically focusing on lithium sulfur batteries in a recently published paper.

“The lithium sulfur battery is recognized as a promising alternative for its intercalation chemistry counterparts,” Zhang says. “It possesses a theoretical energy density of ~2600 Wh kg-1 and provides a theoretical capacity of 1672 mAh g−1 through multi-electron redox reactions. Additionally, valuable characteristics like high natural abundance, low cost and environmental friendliness of sulfur have lent competitive edges to the lithium sulfur battery.”

(more…)

Lithium-ion battery safety has been a hot topic in the scientific community in light of instances of the Samsung Galaxy Note 7 bursting into flames. In order to address these concerns, scientists must first better understand exactly what is causing these safety concerns. In order to do that, a team from the University of Michigan is looking inside the batteries and filming growing dendrites – something the researchers cite as one of the major problems for next-gen lithium batteries.


The study focused primarily on lithium-metal batteries, which have the potential to store 10 times more energy that current lithium-ion batteries. However, researchers believe that issues with dendrites cannot be amended, the future of the Li-metal battery will not be as limitless as some believe.

“As researchers try to cram more and more energy in the same amount of space, morphology problems like dendrites become major challenges. While we don’t fully know why the Note 7s exploded, dendrites make bad things like that happen,” said Kevin Wood, postdoctoral researcher and ECS student member. “If we want high energy density batteries in the future and don’t want them to explode, we need to solve the dendrite problem.”

(more…)

John B. Goodenough

Goodenough was recently named Fellow of ECS at the PRiME 2016 meeting.

John B. Goodenough is recognized internationally as one of the key minds behind the development of the lithium-ion battery; a device that is used to power a huge percentage of today’s electronics and a technology that helped shape the technological frontier.

In a recent interview with the BBC’s Today program’s John Humphrys, the man who helped make the mobile phone possible discusses battery safety in light of exploding Samsung batteries, the Nobel Prize, and his why he doesn’t like cellphones.

“I see the students running around, punching these little tablets, and not talking with one another,” Goodenough says. “I see people going out to dinner and not talking to their partner, rather sitting there talking to someone on their phone, I say, ‘Well, that’s not the way to live.’ Technology is morally neural, it’s what we do with technology that judges us.”

Listen to the full interview here.

BatteryLithium-air batteries are viewed by many as a potential next-generation technology in energy storage. With the highest theoretical energy density of all battery devices, Li-air could revolutionize everything from electric vehicles to large-scale grid storage. However, the relatively young technology has a few barriers to overcome before it can be applied. A new study published in the Journal of The Electrochemical Society (JES) is taking a fundamental step forward in advancing Li-air through the development of mixed metal catalyst that could lead to more efficient electrode reactions in the battery.

The paper, entitled “In Situ Formed Layered-Layered Metal Oxide as Bifunctional Catalyst for Li-Air Batteries,” details a cathode catalyst composed of three transition metals (manganese, nickel, and cobalt), which can create the right oxidation state during the battery cycling to enable both the catalysis of the charge and the discharge reaction.

Future opportunities

According to K.M. Abraham, co-author of the paper, the manganese allows for the catalysis of the oxygen reduction reaction while the cobalt catalyzes the charge reaction of the battery.

“This offers opportunities for future research to develop similar materials to optimize the catalysis of the Li-air battery using one material that will combine the functions of these mixed metal oxides,” Abraham says.

(more…)

Researchers from New York University have developed a new technique to give a highly detailed, 3D look inside a lithium-ion battery.

“One particular challenge we wanted to solve was to make the measurements 3D and sufficiently fast, so that they could be done during the battery charging cycle,” explains Alexej Jerschow, co-author of the study that details the development. “This was made possible by using intrinsic amplification processes, which allow one to measure small features within the cell to diagnose common battery failure mechanisms. We believe these methods could become important techniques for the development of better batteries.”

The look that the researchers offer gives new insight to dendrites – the deposits that build up inside a Li-ion battery that can affect performance and safety. To do this, the team used MRI technology to focus the image and took an additional step to improve image quality.

(more…)