While you may be unfamiliar with Khalil Amine, he has made an immense impact in your life if you happen to use batteries in any way.

As a researcher with a vision of where the science can be applied in the market, Amine has been monumental in developing and moving some of the biggest breakthroughs in battery technology from the lab to the marketplace.

Amine is currently head of the Technology Development Group in the Battery Technology Department at Argonne National Laboratory. From 1998-2008 he was the most cited scientist in the world in the field of battery technology.

He is the chair of the organizing committee for the 18th International Meeting on Lithium Batteries being held this June in Chicago.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

Wasted Food is Wasted Energy

When we discuss energy, we usually talk about how to harness it or how to store it. But what about conserving the energy we’re wasting every day?

A recent study out of the University of Texas uncovered just how much energy we’re wasting through the excessive waste of food. For every four meals that make their way to our plates, an equivalent of one to two is discarded. When examining the energy used to grow, irrigate, fertilize, and transport that food — the amount of energy wasted begins to add up. Watch the video.

food-video

Reginald Penner

Reginald Penner (pictured) and doctoral candidate developed a nanowire-based batter that can be charged hundreds of thousands of times.
Image: Daniel A. Anderson/UC Irvine

Researchers at the University of California, Irvine may have just developed the ever-lasting battery.

A recent study, published in ACS Energy Letters, details a nanowire-based battery material that can be recharged hundreds of thousands of times – making more realistic the idea of a battery that would never need to be replaced.

Potential applications for the battery range from computers and smartphones to cars and spacecrafts.

Highly-conductive nanowires have always been thought appropriate for battery design, but were held back by the fact that their fragility causes them to breakdown after multiple charging cycles. By coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte, the researchers have turn the frail structure into something that has almost infinite recharging capabilities.

Mya Le Thai, a doctoral candidate, led the charge on the research – cycling the tested electrode up to 200,000 times over a three month period without loss of capacity or damage to the nanowire.

“Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it. She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity,” said Reginald M. Penner, chair of UC Irvine’s chemistry department and ECS member. “That was crazy, because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.”

Thai believes that this study shows that nanowire-based batteries could be commercially viable, and potentially the next big break in battery technology.

AA Battery CarThere may soon be a shift in the transportation sector, where traditional fossil fuel-powered vehicles become a thing of the past and electric vehicles start on their rise to dominance.

In fact, we may be seeing that shift already. Last year, battery prices fell 35 percent, which contributed to the 60 percent increase in sales of electric vehicles. If that growth continues along the same path, electric vehicles have the potential to displace oil demand of two million barrels a day as early as 2023.

The key technology at the heart of these vehicles is energy storage. Whether it be the lithium-ion, lithium-air, or fuel cells – electric vehicles depend on affordable, highly efficient electrochemical energy storage to operate.

But what if the future of these vehicles depend on a different type of energy technology?

Saturday Night Live recently made a play on the future of electric vehicles by imagining a world where cars didn’t run off of a singular, efficient battery — but rather tons of AA batteries.

Check out what a car powered entirely out of AA batteries could look like.

Antalexion

Image: Antalexion

With the increasing popularity of solar power and ongoing dialogue about the effects of climate changes comes inevitable discussions about the viability of renewable energy. While efficiency levels have grown tremendously over the years, many still worry about the feasibility of solar panels during inclement weather when the sun is not shining its brightest.

To address that issue, more attention has been focused on energy storage. However, a group of Chinese scientists are turning to the solar panels themselves to answer some of these questions.

In a recently published paper, scientist detailed a new way for solar panels to produce electricity from rain water. The way it works is pretty simple: researchers apply a thin layer of graphene to the bottom of the solar panel; when it rains, you simply flip the panel and allow the positively charged ions from the rain drops to interact with the graphene and produce electricity.

“Although great achievements have been made since the discovery of various solar cells, there is still a remaining problem that the currently known solar cells can only be excited by sunlight on sunny days,” wrote the researchers in the paper.

(more…)

Leveraging electrochemistry to beat diabetes

World Health DayThis year’s World Health Day focuses on diabetes and reducing the burden of a disease that affects over 420 million people worldwide. To put that in perspective, that number rested at 180 million in 1980. It is expected to more than double within the next 20 years.

So how can we beat diabetes? Well, electrochemistry has the potential to play a rather large role in halting the rise of this disease that kills 1.5 million people each year.

A pioneer in diabetes management

Meet Adam Heller, electrochemist and inventor of the FreeStyle and FreeStyle Libre systems; glucose monitoring devices that changed diabetes management technology.

“People were pricking their fingers and taking large blood drops,” Heller, ECS honorary member, said. “It was painful: get a strip, touch it, get a blood sample, measure the glycemia (the blood glucose concentration).”

Around 20 years ago, Heller decided to address the pressing issue of how to accurately, easily, and affordably monitor blood glucose levels. As an electrochemist, he took his work in the electrical wiring of redox enzymes and began to apply it to glucose and diabetes management.

“[My son] observed that if he pricks his skin in the arm, he can painlessly get a much smaller sample of blood,” Heller, who was awarded the National Medal of Technology and Innovation for his efforts in diabetes management technology, said. “By pricking his finger, he got, painfully, a large drop of blood. So he asked me, ‘Can we make a sensor for such a small sample of blood?’ I knew that it could be done if I used a small enough electrode.”

(more…)

Wild mushrooms have recently made a surprising (but not unwelcome) foray into the battery realm.

In a new study, researchers from Purdue University derived promising carbon fibers from a wild mushroom and modified them with nanoparticles to cook up new battery anodes that outperform conventional graphite electrodes for lithium-ion batteries.

(READ: “Wild Fungus Derived Carbon Fibers and Hybrids as Anodes for Lithium-Ion Batteries“)

Outperforming traditional anodes

“Current state-of-the-art lithium-ion batteries must be improved in both energy density and power output in order to meet the future energy storage demand in electric vehicles and grid energy-storage technologies,” said Vilas Pol, ECS member and associate professor at Purdue. “So there is a dire need to develop new anode materials with superior performance.”

This from Purdue University:

[The researchers] have found that carbon fibers derived from Tyromyces fissilis and modified by attaching cobalt oxide nanoparticles outperform conventional graphite in the anodes. The hybrid design has a synergistic result.

(more…)

MITThe Massachusetts Institute of Technology (MIT) Climate CoLab is currently running a series of contests where people all over the world can work with experts and each other to develop climate change solutions.

The waste management contest is now open. We are seeking practical proposals to reduce greenhouse gas emissions from waste and waste management that can be rapidly implemented, scaled-up and/or replicated. We especially encourage proposals that address national (e.g. Intended Nationally Determined Contributions or National Adaptation Plans) and/or sub-national strategies to address the challenges of climate change and aim to help countries, states, and communities implement those strategies.

The Judges’ and Popular Choice Winners will be invited to MIT to present their proposal, enter the Climate CoLab Winners Program and be eligible for the $10,000 Grand Prize. All award winners will receive wide recognition and visibility by the MIT Climate CoLab. See last year’s conference. Entries are due May 23, 2016. Early submissions welcome — entries can be edited until the contest deadline.

Even if you don’t have new ideas yourself, you can help improve other people’s ideas and support the ones you find most promising. Visit the CoLab to learn more.

While we may have a good understanding of battery application and potential, we still lack a great deal of knowledge about what is actually happening inside a battery cell during cycles. In an effort to build a better battery, ECS members from the U.S. Department of Energy’s Argonne National Laboratory have made a novel development to improve battery performance testing.

Future of energy

The team’s work focuses on the design and placement of the reference electrode (RE), which measure voltage of the individual electrodes making up a battery cell, to enhance the quality of information collected from lithium-ion battery cells during cycles. By improving our knowledge of what’s happening inside the battery, researchers will more easily be able to develop longer-lasting batteries.

“Such information is critical, especially when developing batteries for larger-scale applications, such as electric vehicles, that have far greater energy density and longevity requirements than typical batteries in cell phones and laptop computers,” said Daniel Abraham, ECS member and co-author of the newly published study in the Journal of The Electrochemical Society. “This kind of detailed information provides insight into a battery cell’s health; it’s the type of information that researchers need to evaluate battery materials at all stages of their development.”

(more…)

Rooftops can provide more than shelter from the elements; they may also provide a goldmine of untapped energy production.

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) recently issued a report stating that rooftop solar panels have the potential to power nearly 40 percent of the U.S.

“It is important to note that this report only estimates the potential from existing, suitable rooftops, and does not consider the immense potential of ground-mounted PV,” co-author of the report Robert Margolis said. “Actual generation from PV in urban areas could exceed these estimates by installing systems on less suitable roof space, by mounting PV on canopies over open spaces such as parking lots, or by integrating PV into building facades. Further, the results are sensitive to assumptions about module performance, which are expected to continue to improve over time.”

Essentially, solar panels could have limitless possibles. However, land is a precious commodity. Roofs, however, provide a space that typically goes unused to generate a huge amount of power for the U.S.