PV Hybrid

A research team aims to make a battery and solar cell hybrid out of two single systems.
Image: Lunghammer – TU Graz

People across the globe are looking toward renewable solutions to change the landscape of energy. But what happens when the sun goes down and the wind stops blowing? In order to guarantee green energy that is consistent, reliable energy storage systems are critical.

“Currently, single systems of photovoltaic cells which are connected together — mostly lead-based batteries and vast amounts of cable — are in use,” said Ilie Hanzu, TU Graz professor and past member of ECS. “We want to make a battery and solar cell hybrid out of two single systems which is not only able to convert electrical energy, but also store it.”

The idea of a battery and solar cell hybrid is completely novel scientific territory. With this project, entitled SolaBat, the team hopes to develop a product that has commercial applications. For this, the scientists will have to develop the perfect combination of functional materials.

“In the hybrid system, high-performance materials share their tasks in the solar cell and in the battery,” Hanzu said. “We need materials that reliably fulfill their respective tasks and that are also electrochemically compatible with other materials so that they work together in one device.”

(more…)

In an effort to move away from fossil fuels toward a renewable future, researchers have invested time and resources into developing hydrogen fuel. The most efficient way to create this sustainable fuel has been through water-splitting, but the process is not perfect. Now, researchers from MIT, the Skoltech Institute of Technology, and the University of Texas at Austin believe they may have made a breakthrough that could lead to the widespread adoption of water-splitting to produce hydrogen fuel.

The key discovery in the paper published in Nature Communications is the mobilization of oxygen atoms from the crystal surface of perovskite-oxide electrodes to participate in the formation of oxygen gas, which can speed up water-splitting reactions.

The breakthrough could be a crucial step in helping the energy infrastructure efficiently move away from traditional energy sources to renewables.

“The generation of oxygen from water remains a significant bottleneck in the development of water electrolyzers and also in the development of fuel cell and metal-air battery technologies,” said J. Tyler Mefford, current ECS member and lead author of the study.

But the new results didn’t come out of the woodwork. The data illustrates collaborative work across experimental and theoretical fields. The new work essentially explains over 40 years of theory and experiments, looking at why some approaches worked and others failed.

“If we could develop catalysts made with Earth-abundant materials that could reversibly and efficiently electrolyze water into hydrogen and oxygen, we could have affordable hydrogen generation from renewables — and with that, the possibility of electric cars that run on water with ranges similar to gas powered cars,” Mefford said.

Improving Access to Clean Water

Access to clean drinking water is something many take for granted. Crises like that of Flint, MI illuminate the fragility of our water infrastructure and how quickly access can be taken away. Even now, hundreds of millions of people around the world still lack access to adequate water.

Gaining access

But it’s not all negative. In the past 25 years, 2.6 billion people worldwide gained access to clean drinking water. This initiative stemmed from part of the Millennium Development Goals set by the United Nations in 1990, attempting to cut the number of global citizens without access to clean drinking water in half. While this goal was achieved in 2010, there are still about 663 million without proper water and sanitation.

(MORE: Check out powerful images from the Water Front project.)

The divide

So who doesn’t have clean drinking water? Overall, urban areas tend to have greater access due to improved water infrastructure systems set in place. Access in rural areas has improved over the years, but people in these areas are still hit the hardest.

The major divide is most visible when analyzing the numbers by regions. Africa, China, and India are among the hardest hit, making up the majority of the 663 million citizens without access to water.

(more…)

From Trash to (Energy) Treasure

Image: Liz West

Image: Liz West

It doesn’t matter how green you thumb is, there will always be fruits and vegetables in your garden that just don’t quite make it. The same concept goes for commercial farms, where farmers accumulate tons of fruit and vegetable waste every year.

In fact, the state of Florida alone produces an estimated 369,000 tons of waste from tomatoes each year. But what if you could turn that waste into electricity?

That’s exactly what one team comprised of researchers from South Dakota School of Mines & Technology, Princeton University, and Florida Gulf Coast University are doing.

In order to produce the electricity, the team developed a microbial electrochemical cell that can use tomato waste to generate electric current.

“We have found that spoiled and damaged tomatoes left over from harvest can be a particularly powerful source of energy when used in a biological or microbial electrochemical cell,” says Namita Shrestha, a graduate student working on the project.

This from Tree Hugger:

The bacteria in the fuel cell trigger an oxidation process that releases electrons which are captured by the fuel cell and become a source of electricity. The tomatoes have proven to be a potent energy source. The natural lycopene in the tomatoes acts as a mediator to encourage electricity generation and the researchers say that while waste material usually performs poorly compared to pure chemicals in fuel cells, the waste tomatoes perform just as well or better.

Read the full article.

While their first trial resulted in just 0.3 watts of electricity per 10 milligrams of tomato waste, the researchers believe that more trials will result in improved electricity generation.

When we think of carbon and the environment, our minds often develop a negative association between the two in light of things such as greenhouse gases and climate change. But what if carbon is the answer to clean energy?

A team of researchers at Griffith University is looking toward carbon to lead the way in the clean energy revolution. Their latest research showed that carbon could be used to produce hydrogen from water. This could offer a potential replacement for the costly platinum materials currently used.

“Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Xiangdong Yao, leader of the research group. “We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective hydrogen production from water.”

(MORE: Learn about the future of electrochemical energy.)

This from Griffith University:

Proponents of a hydrogen economy advocate hydrogen as a potential fuel for motive power including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).

Read the full article.

The researchers also believe that these findings could open the door for new development in large-scale water electrolysis.

Upcycling has become a huge trend in recent years. People are reusing and repurposing items that most wouldn’t give a second glance, transforming them into completely new, high-quality products. So what if we could take that same concept and apply it to the greenhouse gas emissions in the environment that are accelerating climate change?

An interdisciplinary team from UCLA is taking a shot at upcycling carbon dioxide by converting it into a new building material named CO2NCRETE, which could be fabricated by 3D printers.

“What this technology does is take something that we have viewed as a nuisance – carbon dioxide that’s emitted from smokestacks – and turn it into something valuable,” says J.R. DeShazo, senior member of the research team.

The fact that the team is attempting to produce a concrete-like material is also important. Currently, the extraction and preparation of building materials like concrete is responsible for 5 percent of the world’s greenhouse gas emissions. The upcycling of carbon could cut that number drastically all while reducing the enormous emissions being released from power plants (30 percent of the world’s emissions).

“We can demonstrate a process where we take lime and combine it with carbon dioxide to produce a cement-like material,” says Gaurav Sant, lead scientific contributor. “The big challenge we foresee with this is we’re not just trying to develop a building material. We’re trying to develop a process solution, an integrated technology which goes right from CO2 to a finished product.”

When the loaves in your breadbox begin to develop a moldy exterior caused by fungi, they tend to find a new home at the bottom of a trash can. However, researchers have recently developed some pretty interesting results that suggest bread mold could be the key to producing more sustainable electrochemical materials for use in rechargeable batteries.

For the first time, researchers were able to show that the fungus Neurospora crassa (better known as the enemy to bread) can transform manganese into mineral composites with promising electrochemical properties.

(MORE: Read the full paper.)

“We have made electrochemically active materials using a fungal manganese biomineralization process,” says Geoffrey Gadd of the University of Dundee in Scotland. “The electrochemical properties of the carbonized fungal biomass-mineral composite were tested in a supercapacitor and a lithium-ion battery, and it [the composite] was found to have excellent electrochemical properties. This system therefore suggests a novel biotechnological method for the preparation of sustainable electrochemical materials.”

This from University of Dundee:

In the new study, Gadd and his colleagues incubated N. crassa in media amended with urea and manganese chloride (MnCl2) and watched what happened. The researchers found that the long branching fungal filaments (or hyphae) became biomineralized and/or enveloped by minerals in various formations. After heat treatment, they were left with a mixture of carbonized biomass and manganese oxides. Further study of those structures show that they have ideal electrochemical properties for use in supercapacitors or lithium-ion batteries.

Read the full article here.

The manganese oxides in the lithium-ion batteries are showing an excellent cycling stability and more than 90 percent capacity after 200 cycles.

An interdisciplinary team, including 32 year ECS member Stuart Licht and ECS student member Matthew Lefler, has developed a way to make electric vehicles that are not only carbon neutral, but carbon negative – capable of reducing the amount of atmospheric carbon dioxide as they operate by transforming the greenhouse gas.

By replacing the graphite electrodes that are currently being used in the development of lithium-ion batteries for electric cars with carbon materials recovered from the atmosphere, the researchers have been able to develop a recipe for converting collected carbon dioxide into batteries.

This from Vanderbilt University:

The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Read the full article.

The research is not the first time scientists have shown progress in collecting and converting harmful greenhouse gases from the environment.

Typically, carbon dioxide conversion revolves around transforming the gas into low-value fuels such as methanol. These conversions often do not justify the costs.

(MORE: Read “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.“)

However, the new process produces better batteries that are not only expected to be efficient, but also cost effective.

(more…)

Looking to save on electricity? Why not use bioluminescent bacteria to light the way?

Innovative start-up Glowee is looking to do just that to illuminate the streets of Paris. By using bacteria found in squid, Glowee is producing lights that consist of transparent gases filled with a gel containing the bioluminescent bacteria alongside the sugars and oxygen they need to survive.

The bio-lights will allow cities to cut back on energy and avoid light pollution. With lower electricity consumption comes considerably less carbon dioxide emissions.

Currently, the company is looking to increase lifespan and efficiency before implementing the technology.

MIT researcher have developed the first steps to creating the thinnest, lightest solar cell ever made.

Through a unique fabrication method, the researchers are moving toward the development of a solar cell so thin it could blow away. Instead of a solar cell’s typical makeup, the MIT researchers have opted for a unique fabrication of creating each layer at the same time.

This from Popular Science:

Solar cells are typically made up of layers of photovoltaic materials and a substrate, such as glass or plastic. Instead of the usual method of fabricating each layer separately, and then depositing the layers onto the substrate, the MIT researchers made all three parts of their solar cell (the cell, the supportive substrate, and the protective coating) at the same time, a method that cuts down on performance-harming contaminants. In the demonstration, the substrate and coating are made from parylene, which is a flexible polymer, and the component that absorbs light was made from dibutyl phthalate (DBP). The researchers note that the solar cell could be made from a number of material combinations, including perovskite, and it could be added to a variety of surfaces such as fabric or paper.

Read the full article.

To put the thinness of the solar cell in perspective, it is approximately 1/50th the thickness of a strand of hair. The light weight means that its power-to-weight ratio is particularly high, with an efficiency output of about 6 watts per gram (400 times higher than silicon-based solar cells).

The final trial for the researcher will be to translate the lab work to the real world, making it scalable and practical for commercial use.