Antalexion

Image: Antalexion

With the increasing popularity of solar power and ongoing dialogue about the effects of climate changes comes inevitable discussions about the viability of renewable energy. While efficiency levels have grown tremendously over the years, many still worry about the feasibility of solar panels during inclement weather when the sun is not shining its brightest.

To address that issue, more attention has been focused on energy storage. However, a group of Chinese scientists are turning to the solar panels themselves to answer some of these questions.

In a recently published paper, scientist detailed a new way for solar panels to produce electricity from rain water. The way it works is pretty simple: researchers apply a thin layer of graphene to the bottom of the solar panel; when it rains, you simply flip the panel and allow the positively charged ions from the rain drops to interact with the graphene and produce electricity.

“Although great achievements have been made since the discovery of various solar cells, there is still a remaining problem that the currently known solar cells can only be excited by sunlight on sunny days,” wrote the researchers in the paper.

(more…)

Leveraging electrochemistry to beat diabetes

World Health DayThis year’s World Health Day focuses on diabetes and reducing the burden of a disease that affects over 420 million people worldwide. To put that in perspective, that number rested at 180 million in 1980. It is expected to more than double within the next 20 years.

So how can we beat diabetes? Well, electrochemistry has the potential to play a rather large role in halting the rise of this disease that kills 1.5 million people each year.

A pioneer in diabetes management

Meet Adam Heller, electrochemist and inventor of the FreeStyle and FreeStyle Libre systems; glucose monitoring devices that changed diabetes management technology.

“People were pricking their fingers and taking large blood drops,” Heller, ECS honorary member, said. “It was painful: get a strip, touch it, get a blood sample, measure the glycemia (the blood glucose concentration).”

Around 20 years ago, Heller decided to address the pressing issue of how to accurately, easily, and affordably monitor blood glucose levels. As an electrochemist, he took his work in the electrical wiring of redox enzymes and began to apply it to glucose and diabetes management.

“[My son] observed that if he pricks his skin in the arm, he can painlessly get a much smaller sample of blood,” Heller, who was awarded the National Medal of Technology and Innovation for his efforts in diabetes management technology, said. “By pricking his finger, he got, painfully, a large drop of blood. So he asked me, ‘Can we make a sensor for such a small sample of blood?’ I knew that it could be done if I used a small enough electrode.”

(more…)

Wild mushrooms have recently made a surprising (but not unwelcome) foray into the battery realm.

In a new study, researchers from Purdue University derived promising carbon fibers from a wild mushroom and modified them with nanoparticles to cook up new battery anodes that outperform conventional graphite electrodes for lithium-ion batteries.

(READ: “Wild Fungus Derived Carbon Fibers and Hybrids as Anodes for Lithium-Ion Batteries“)

Outperforming traditional anodes

“Current state-of-the-art lithium-ion batteries must be improved in both energy density and power output in order to meet the future energy storage demand in electric vehicles and grid energy-storage technologies,” said Vilas Pol, ECS member and associate professor at Purdue. “So there is a dire need to develop new anode materials with superior performance.”

This from Purdue University:

[The researchers] have found that carbon fibers derived from Tyromyces fissilis and modified by attaching cobalt oxide nanoparticles outperform conventional graphite in the anodes. The hybrid design has a synergistic result.

(more…)

MITThe Massachusetts Institute of Technology (MIT) Climate CoLab is currently running a series of contests where people all over the world can work with experts and each other to develop climate change solutions.

The waste management contest is now open. We are seeking practical proposals to reduce greenhouse gas emissions from waste and waste management that can be rapidly implemented, scaled-up and/or replicated. We especially encourage proposals that address national (e.g. Intended Nationally Determined Contributions or National Adaptation Plans) and/or sub-national strategies to address the challenges of climate change and aim to help countries, states, and communities implement those strategies.

The Judges’ and Popular Choice Winners will be invited to MIT to present their proposal, enter the Climate CoLab Winners Program and be eligible for the $10,000 Grand Prize. All award winners will receive wide recognition and visibility by the MIT Climate CoLab. See last year’s conference. Entries are due May 23, 2016. Early submissions welcome — entries can be edited until the contest deadline.

Even if you don’t have new ideas yourself, you can help improve other people’s ideas and support the ones you find most promising. Visit the CoLab to learn more.

While we may have a good understanding of battery application and potential, we still lack a great deal of knowledge about what is actually happening inside a battery cell during cycles. In an effort to build a better battery, ECS members from the U.S. Department of Energy’s Argonne National Laboratory have made a novel development to improve battery performance testing.

Future of energy

The team’s work focuses on the design and placement of the reference electrode (RE), which measure voltage of the individual electrodes making up a battery cell, to enhance the quality of information collected from lithium-ion battery cells during cycles. By improving our knowledge of what’s happening inside the battery, researchers will more easily be able to develop longer-lasting batteries.

“Such information is critical, especially when developing batteries for larger-scale applications, such as electric vehicles, that have far greater energy density and longevity requirements than typical batteries in cell phones and laptop computers,” said Daniel Abraham, ECS member and co-author of the newly published study in the Journal of The Electrochemical Society. “This kind of detailed information provides insight into a battery cell’s health; it’s the type of information that researchers need to evaluate battery materials at all stages of their development.”

(more…)

Rooftops can provide more than shelter from the elements; they may also provide a goldmine of untapped energy production.

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) recently issued a report stating that rooftop solar panels have the potential to power nearly 40 percent of the U.S.

“It is important to note that this report only estimates the potential from existing, suitable rooftops, and does not consider the immense potential of ground-mounted PV,” co-author of the report Robert Margolis said. “Actual generation from PV in urban areas could exceed these estimates by installing systems on less suitable roof space, by mounting PV on canopies over open spaces such as parking lots, or by integrating PV into building facades. Further, the results are sensitive to assumptions about module performance, which are expected to continue to improve over time.”

Essentially, solar panels could have limitless possibles. However, land is a precious commodity. Roofs, however, provide a space that typically goes unused to generate a huge amount of power for the U.S.

PV Hybrid

A research team aims to make a battery and solar cell hybrid out of two single systems.
Image: Lunghammer – TU Graz

People across the globe are looking toward renewable solutions to change the landscape of energy. But what happens when the sun goes down and the wind stops blowing? In order to guarantee green energy that is consistent, reliable energy storage systems are critical.

“Currently, single systems of photovoltaic cells which are connected together — mostly lead-based batteries and vast amounts of cable — are in use,” said Ilie Hanzu, TU Graz professor and past member of ECS. “We want to make a battery and solar cell hybrid out of two single systems which is not only able to convert electrical energy, but also store it.”

The idea of a battery and solar cell hybrid is completely novel scientific territory. With this project, entitled SolaBat, the team hopes to develop a product that has commercial applications. For this, the scientists will have to develop the perfect combination of functional materials.

“In the hybrid system, high-performance materials share their tasks in the solar cell and in the battery,” Hanzu said. “We need materials that reliably fulfill their respective tasks and that are also electrochemically compatible with other materials so that they work together in one device.”

(more…)

In an effort to move away from fossil fuels toward a renewable future, researchers have invested time and resources into developing hydrogen fuel. The most efficient way to create this sustainable fuel has been through water-splitting, but the process is not perfect. Now, researchers from MIT, the Skoltech Institute of Technology, and the University of Texas at Austin believe they may have made a breakthrough that could lead to the widespread adoption of water-splitting to produce hydrogen fuel.

The key discovery in the paper published in Nature Communications is the mobilization of oxygen atoms from the crystal surface of perovskite-oxide electrodes to participate in the formation of oxygen gas, which can speed up water-splitting reactions.

The breakthrough could be a crucial step in helping the energy infrastructure efficiently move away from traditional energy sources to renewables.

“The generation of oxygen from water remains a significant bottleneck in the development of water electrolyzers and also in the development of fuel cell and metal-air battery technologies,” said J. Tyler Mefford, current ECS member and lead author of the study.

But the new results didn’t come out of the woodwork. The data illustrates collaborative work across experimental and theoretical fields. The new work essentially explains over 40 years of theory and experiments, looking at why some approaches worked and others failed.

“If we could develop catalysts made with Earth-abundant materials that could reversibly and efficiently electrolyze water into hydrogen and oxygen, we could have affordable hydrogen generation from renewables — and with that, the possibility of electric cars that run on water with ranges similar to gas powered cars,” Mefford said.

Improving Access to Clean Water

Access to clean drinking water is something many take for granted. Crises like that of Flint, MI illuminate the fragility of our water infrastructure and how quickly access can be taken away. Even now, hundreds of millions of people around the world still lack access to adequate water.

Gaining access

But it’s not all negative. In the past 25 years, 2.6 billion people worldwide gained access to clean drinking water. This initiative stemmed from part of the Millennium Development Goals set by the United Nations in 1990, attempting to cut the number of global citizens without access to clean drinking water in half. While this goal was achieved in 2010, there are still about 663 million without proper water and sanitation.

(MORE: Check out powerful images from the Water Front project.)

The divide

So who doesn’t have clean drinking water? Overall, urban areas tend to have greater access due to improved water infrastructure systems set in place. Access in rural areas has improved over the years, but people in these areas are still hit the hardest.

The major divide is most visible when analyzing the numbers by regions. Africa, China, and India are among the hardest hit, making up the majority of the 663 million citizens without access to water.

(more…)

From Trash to (Energy) Treasure

Image: Liz West

Image: Liz West

It doesn’t matter how green you thumb is, there will always be fruits and vegetables in your garden that just don’t quite make it. The same concept goes for commercial farms, where farmers accumulate tons of fruit and vegetable waste every year.

In fact, the state of Florida alone produces an estimated 369,000 tons of waste from tomatoes each year. But what if you could turn that waste into electricity?

That’s exactly what one team comprised of researchers from South Dakota School of Mines & Technology, Princeton University, and Florida Gulf Coast University are doing.

In order to produce the electricity, the team developed a microbial electrochemical cell that can use tomato waste to generate electric current.

“We have found that spoiled and damaged tomatoes left over from harvest can be a particularly powerful source of energy when used in a biological or microbial electrochemical cell,” says Namita Shrestha, a graduate student working on the project.

This from Tree Hugger:

The bacteria in the fuel cell trigger an oxidation process that releases electrons which are captured by the fuel cell and become a source of electricity. The tomatoes have proven to be a potent energy source. The natural lycopene in the tomatoes acts as a mediator to encourage electricity generation and the researchers say that while waste material usually performs poorly compared to pure chemicals in fuel cells, the waste tomatoes perform just as well or better.

Read the full article.

While their first trial resulted in just 0.3 watts of electricity per 10 milligrams of tomato waste, the researchers believe that more trials will result in improved electricity generation.

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.