Key Development in Hydrogen Fuel Cell Vehicles

Hydrogen fuel cell vehicles have the potential to revolutionize the transportation system. From aiding the fight against climate change through clean emissions to reducing dependency on fossil fuels, hydrogen could potential help power the future and change mobility. Automakers believe that by 2020, there will be tens of thousands of hydrogen fuel cell vehicles on the road. In order to do this, we’re looking towards scientists to make innovation developments leading toward cheaper and more efficient technologies.

Creating a Hydrogen Fuel Cell Vehicle

Shawn Litster, ECS member and associate professor at Carnegie Mellon University, is doing just that. Lister, along with ECS student member William Epting, is focusing his attention on energy technologies that utilize electrochemical devices to further research in the development of the near-perfect fuel cell vehicle.

(Check out a past meeting abstract by the two on fuel cell electrode analysis.)

“We’re looking for ways to minimize the impact of transportation on society and the environment,” said Litster.


Litster and his team have discovered that one of the reasons for the high cost of development for hydrogen fuel cell vehicles is the nanoscale polymer films. While these films offer a host of positive qualities, they require expensive platinum to operate properly.

(more…)

The Key to Fast-Charging Li-Ion Batteries

Batteries are a critical part of our everyday lives. From phones to laptops to cars to grid energy storage—batteries are essential to many devices. Lithium ion batteries have taken the lead in battery technology, with lithium iron phosphate batteries (LFP) performing particularly well. While it was known that LFP batteries could charge quickly and withstand many factors, the reasons for this were unknown until know.


A team of researchers from the Paul Scherrer Institute and Toyota Central R&D Labs has discovered why LFP batteries can be recharged so rapidly. The team is comprised of ECS member Tsuyoshi Sasaki, past members Michael Hess and Petr Novak, and Journal of The Electrochemical Society (JES) published author Claire Villevieille.

(PS: Check out their past paper, “Surface/Interface Study on Full xLi2MnO3·(1 − x)LiMO2 (M = Ni, Mn, Co)/Graphite Cells.”)

This from Paul Scherrer Institute:

The reason: the step-like concentration gradient gives way to a gentle, ramp-like progression of the lithium concentration. This is because, at higher voltages, the lithium ions involved in the charging process are distributed across the volume of the electrode particles for brief moments as opposed to being herded together in a thin layer boundary. As a result, the lithium can be set in motion more easily during charging, without the need for more energy to be added to negotiate the layer boundary.

(more…)

High Solar Efficiency Through Water-Splitting

Rice University researchers (clockwise from left) Chloe Doiron, Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann.

Rice University researchers (clockwise from left) Chloe Doiron, Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann.

A team from Rice University, led by assistant professor and ECS member Isabell Thomann, has demonstrate a highly efficient way to harness energy from the sun though the splitting of water molecules.

Through the configuration of light-activated gold nanoparticles, the team was able to successfully harvest and transfer energy to what the scientists refer to as “hot electrons.”

“Hot electrons have the potential to drive very useful chemical reactions, but they decay very rapidly, and people have struggled to harness their energy,” said Thomann. “For example, most of the energy losses in today’s best photovoltaic solar panels are the result of hot electrons that cool within a few trillionths of a second and release their energy as wasted heat.”

If the hot electrons could be capture before they have the opportunity to cool, society could be seeing a significant increase to energy conversion efficiencies.

(more…)

Coffee Grounds to Store Greenhouse Gases

Do your old, damp coffee grounds have the potential to save the world? New research from the journal Nanotechnology states that the same coffee grounds you toss in the trash every day actually have the ability to store methane.

ECS Fellow Meyya Meyyappan and a team of researchers found that by combining the used coffee grounds with potassium hydroxide, a material with the ability to store substantial amounts of methane was created.

Coffee Grounds Fight Climate Change

In light of global warming and the damaging effects rising temperatures and increased greenhouse gas emissions have on the planet, the ability to store harmful methane is critical.

Methane is a preventable greenhouse gas that accounts for about 10 percent of all harmful emissions derived from human activity. While methane doesn’t stay in the atmosphere as long as the more commonly talked about carbon dioxide, it is far more devastating to the climate due to its extreme efficiency in absorbing heat. In fact, methane is about 84 times more potent than carbon dioxide.

(more…)

nanomaterialMore and more people are looking toward nanomaterials to help solve issues in the energy infrastructure. Not only could this technology lead to more efficient and cost effective renewable energy sources, but could also help the development of devices that remove pollutants from the air and water. In fact, nanotechnology has such a vast scope that there is potential for it to impact almost all areas of society.

“There is not a field that is not touched,” said nanomaterials expert Francis D’Souza of the University of North Texas. “It is a group of very eminent scientists exploring the possibilities in every single field. You can expect big discoveries and breakthroughs.”

While nanomaterials are infiltrating everything from electronics to biomedical applications, many scientists have shift their primary focus to energy harvesting.

“There are so many new capabilities that can be exploited with nanotechnology, from dramatic improvements to solar conversion efficiency to battery systems with higher storage capacity and faster charging and discharging cycles to miniaturized power management systems, so we can have energy storage that can last for a long time,” said IBM’s Lili Deligianni.

(more…)

In an effort to address climate change, President Obama is setting the United States on the path towards a clean energy economy.

Recently, President Obama announced the country’s plan to drive alternative energy innovation and accelerate the transition to clean energy. Growing on the already established ENERGY STAR program, the executive actions focus on implementing clean, efficient, and affordable energy technologies across multiple sectors of the United States.

Highlights

  • More funding for energy projects utilizing innovative technology, including an additional $1 billion
  • A total of 11 projects across the country will receive $24 million for projects that have the potential to double the amount of energy a solar panel can produce
  • Bringing a 485-megawatt photovoltaic facility to produce enough energy to power more than 145,000 homes
  • PACE (Property-Assessed Clean Energy) project to make alternative energy more easily accessible for single-families

(more…)

Seeing Climate Change in Real Time

IMG_5465_webThe science behind climate change is alarming. Concentrations of greenhouse gases are rising at an alarming rate, land ice is dropping by 258 billion metric tons per year, and every passing year is proving to be the warmest year on record. Even with all of this information, it is difficult for some to grasp the complications climate change is causing due to the fact that an average person’s day-to-day life has remained relatively unharmed.

“You can tell people that all these fossil fuels we’re using and all the CO2 that’s building up in the air is going to cause terrific problems. It’s only going to be when lower Manhattan is underwater that they’re going to start to respond,” said Allen J. Bard, the unofficial father of modern electrochemistry.

What Does Climate Change Look Like?

In order to make the reality of climate change more tangible, scientists with the Department of Energy are launching their SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) project to naturally demonstrate what the world could look like if there is no action taken on climate change.

(more…)

Fuel cells have been receiving a lot of attention in the scientific domain as one of the most promising alternative energy sources. When applying fuel cell technology to both the grid and automobiles, one issue is persistent: cost. Researchers at Argonne National Laboratory (ANNL) have been looking for a way to combat the price issues. Now, a team of researchers led by ECS member Di-Jia Liu have found a potential way to utilize fuel cells without the high cost of development and commercialization.

A New Catalyst

The team’s development revolves around the notion of using naturally abundant materials without sacrificing efficiency. Current, fuel cells work off a platinum catalyst, which is both expensive and scarce. The new catalyst eliminates the need for the precious material, all while demonstrating performance rates comparable to that of a platinum catalyst.

The scientists developed the new catalyst via the synthesis of a highly efficient, nanofibrous non-precious metal catalyst. If this technique proves to be commercially viable, it transition into automotive technology and extend the range of electric vehicles and potentially eliminate the need for charging.

(more…)

Charging Electric Cars in Five Minutes

Earlier this year, we looked at the Israeli start-up company StoreDot’s innovative research in battery technology that could allow a smartphone battery to charge in just 30 seconds.

Now, the same company is taking that same technology and applying it to electric vehicles.

The company is claiming to have tweaked their technology to fully charge an electric car in just five minutes.

According to StoreDot, an array of 7,000 cells could enable electric vehicles to travel up to 300 mile on just a five minute charge.

This from Ecomento:

StoreDot believes it can speed up charging by creating a new variant of the industry-standard lithium-ion chemistry. It uses nanotechnology to make new organic materials that researchers claim have lower resistance than the materials used in current lithium-ion cells. That means electricity can flow through the battery more easily.

(more…)

Tiny Particle, Big Results

EJ Taylor, ECS Treasurer and Chief Technical Officer at Faraday Technology, recently ran across this article from The Economist discussing an accidental discovery that could yield big results.

Materials scientists Wang Changan of Tsinghua University and Li Ju of MIT may have unintentionally found the answer to developing a battery that can last up to four times longer than the current generation.

Initially, the scientists were simply researching nanoparticles made of aluminum. While these tiny particles are good conductors of electricity, they become less efficient when exposed to air. When air hits these tiny particles, a coating of an oxide film begins to develop, greatly affecting the performance. The research the two scientists were working on was not to create a better battery, but rather to eliminate the oxide that coats the particles.

This from The Economist:

Their method was to soak the particles in a mixture of sulphuric acid and titanium oxysulphate. This replaces the aluminium oxide with titanium oxide, which is more conductive. However, they accidentally left one batch of particles in the acidic mixture for several hours longer than they meant to. As a result, though shells of titanium dioxide did form on them as expected, acid had time to leak through these shells and dissolve away some of the aluminium within. The consequence was nanoparticles that consisted of a titanium dioxide outer layer surrounding a loose kernel of aluminium.

(more…)