Chemical Bonds On-Demand

PhysRevLett.114.233003

Tailored laser pulse controls the formation of a molecular bond between two atoms.
Image: Christiane Koch

Until now, the idea of controlling reactions with the light from lasers was only theoretical. However, new research shows that a laser pulse has the ability to control the formation of a molecular bond between two atoms.

Due to this new development, researchers can now control the path of the chemical process with extreme precision.

This from APS Physics:

For the first time, researchers demonstrate the coherent control of the reaction by which two atoms form a molecule. The achievement—coupled with other photocatalyst tools—could potentially lead to a chemical assembly line, in which lasers slice and weld molecular pieces into a desired end product.

(more…)

1-utarlingtont

The new solar cell developed by the University of Texas at Arlington team is more efficient and can store solar energy at night.
Image: UT Arlington

A research team from the University of Texas at Arlington comprised of both present and past ECS members has developed a new energy cell for large-scale solar energy storage even when it’s dark.

Solar energy systems that are currently in the market and limited in efficiency levels on cloudy days, and are typically unable to convert energy when the sun goes down.

The team, including ECS student member Chiajen Hsu and two former ECS members, has developed an all-vanadium photoelectrochemical flow cell that allows for energy storage during the night.

“This research has a chance to rewrite how we store and use solar power,” said Fuqiang Liu, past member of ECS and assistant professor in the Materials Science and Engineering Department who led the research team. “As renewable energy becomes more prevalent, the ability to store solar energy and use it as a renewable alternative provides a sustainable solution to the problem of energy shortage. It also can effectively harness the inexhaustible energy from the sun.”

(more…)

Nanogenerator Harvests Power from Tires

During initial trials, the team tested the nanogenerator's capabilities on a toy car with LED lights.Image: UW-Madison College of Engineering

During initial trials, the team tested the nanogenerator’s capabilities on a toy car with LED lights.
Image: UW-Madison College of Engineering

Earlier this year, the company Goodyear announced its concept of a tire that can harvest heat in a variety of ways to help power electric vehicles. Since then, researchers from the University of Wisconsin-Madison have been hard at work on their own accord to develop a tire that can harvest the typically wasted power produced from friction.

A team of UW-Madison researchers got together, led by Dr. Xudong Wang, to develop a nanogenerator that has the ability to harvest the energy from a car’s rolling tire friction, which will potentially make care tires a much more efficient product.

Find the paper in the journal Nano Energy, and take a look at Wang’s past paper, “3D Nanowire Architectures for Highly-Efficient Photoelectrochemical Anodes,” published in ECS Transactions.

This from UW-Madison:

The nanogenerator relies on the triboelectric effect to harness energy from the changing electric potential between the pavement and a vehicle’s wheels. The triboelectric effect is the electric charge that results from the contact or rubbing together of two dissimilar objects.

(more…)

Researchers aim to assess the economic and technical feasibility of these luminescent solar concentrators. Image: Eindhoven University of Technology

Researchers aim to assess the economic and technical feasibility of these luminescent solar concentrators.
Image: University of Technology

The Netherlands is making a push toward renewable energy sources with their new testing of solar energy generating noise barriers, which will be installed along highways. Researchers are currently testing the first phase of these energy storage devices, which generate electricity using solar cells integrated in noise barriers.

Researchers from Eindhoven University of Technology have implemented luminescent solar concentrators (LSCs) that are aesthetically attractive and should lead to promising energy efficiency levels.

“Further benefits are that the principle used is low cost, they can be produced in any desired, regular color, is robust, and the LSCs will even work when the sky is cloudy. That means it offers tremendous potential,” said Michael Debije of Eindhoven University of Technology’s Department of Chemical Engineering and Chemistry.

(more…)

The new structure has high mobility of Na+ ions and a robust framework.Ia

The new structure has high mobility of Na+ ions and a robust framework.
Image: Nature Communications

With the demand for hand-held electronics at an all-time high, the costs of the materials used to make them are also rising. That includes materials used to make lithium batteries, which is a cause for concern when projecting the development of large-scale grid storage.

In order to find an alternative solution to the high material costs connected with lithium batteries, the researchers at the Australian Nuclear Science and Technology Organisation (ANSTO) and the Institute of Physics at the Chinese Academy of Science in Beijing have begun focusing their attention on sodium-ion batteries.

The science around sodium-ion batteries dates back to the 1980s, but the technology never took off due to resulting low energy densities and short life cycles.

However, the new research looks to combat those issues by improving the properties of a class of electrode materials by manipulating their electron structure in the sodium-ion battery.

(more…)

Researcher from Stanford University have developed a new device that has made water-splitting more practical and boosted efficiency levels to an unprecedented 82 percent.

With just one catalyst, the novel water-splitting device can continuously generate hydrogen and oxygen for more than 200 hours with a steady input of just 1.5 volts of electricity.

Through this new device, researchers can produce renewable sources of clean-burning hydrogen fuel.

The Stanford researchers are using just one catalyst instead of the traditional two in water-splitting processes, which allows the cost to drop significantly.

“For practical water splitting, an expensive barrier is needed to separate the two electrolytes, adding to the cost of the device. But our single-catalyst water splitter operates efficiently in one electrolyte with a uniform pH,” said Haotian Wang, lead author of the study and graduate student at Stanford.

(more…)

Alvin J. Salkind

Alvin J. Salkind in an undated photo.

“My nature is curiosity and The Electrochemical Society has gone a long way to satisfy my curiosity…” — A. Salkind

About two years ago, ECS began a conversation with Prof. Salkind about his proposal for a revised edition of Alkaline Storage Batteries. In the proposal we presented to John A. Wiley & Sons (our partner in publishing monographs), I said it was from “one of the ECS ‘giants’.”

That was quite true about Dr. Salkind. When I first met him (and ever after), I was engaged by his tremendous intellect, his wide-ranging curiosity, and his still being very much involved with his science.

Prof. Salkind was an emeritus member of ECS, having joined in 1952 as a student. He served the Society very well — as a Chair of our Battery Division and on an innovative committee called the New Technology Subcommittee. He became an ECS Fellow only in 2014, but over the course of his many years of involvement with ECS, he organized symposia, edited proceedings volumes, and chaired many committees.

Alkaline-Storage-Batteries

Cover of the Alkaline Storage Batteries book from 1969

In conjunction with developing a new edition of the Alkaline Storage Batteries book, Prof. Salkind began visiting ECS headquarters. We were immediately drawn in by his still-vibrant enthusiasm for the field and his fascinating anecdotes about other ECS notables in the field: Vladimir Bagotsky, Ernest Yeager, and Vittorio de Nora, among others. He was always willing to teach and to share. We were very fortunate to be able to “capture” Prof. Salkind in a very recent interview at the HQ office.

(Listen to it as a podcast. Watch the video.)

Professor Salkind generously considered ECS his technological home and brought his important monograph to be published by ECS. ECS is grateful to Dr. Salkind for his years of service to the Society and his contributions to the entire battery community; and we thank his family for supporting this remarkable person and sharing him with ECS.

The new arrangement of photovoltaic materials includes bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan).Image: UCLA

The new arrangement of photovoltaic materials includes bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan).
Image: UCLA

A team of UCLA scientists are delivering good news on the solar energy front with the development of their new energy storage technology that could change the way scientists think about solar cell design.

Taking a little inspiration from the naturally occurring process of photosynthesis, the researchers devised a new arrangement of solar cell ingredients to make a more efficient cell.

“In photosynthesis, plants that are exposed to sunlight use carefully organized nanoscale structures within their cells to rapidly separate charges — pulling electrons away from the positively charged molecule that is left behind, and keeping positive and negative charges separated. That separation is the key to making the process so efficient,” said Sarah Tolbert, senior author of this research and published ECS author.

PS: Check out Tolbert’s recently published open access paper in the Journal of The Electrochemical Society entitled, “The Development of Pseudocapacitive Properties in Nanosized-MoO2.”

The currently dilemma in solar cell design revolves around developing a product that is both efficient and affordable. While conventional silicon works rather well, it is too expensive to be practical on a large scale. More engineers and researchers have been moving to replace silicon with plastic, but that leads to efficiency levels taking a hit.

(more…)

Beth Schademann, ECS’s Publications Specialist, recently came across a Huffington Post article detailing some life-saving innovations in water purification.

A simple bag called the Fieldtrate Lite has made its way to isolated communities that lack clean water in an effort to save lives through improved sanitation.

The water filtering bag is a development of Singapore’s WateROAM, who specialize in portable water filtration systems. The Fieldtrate Lite filters dirty water though membranes, turning it into potable water in a very short period of time. The bag is specifically appealing for disaster relief operations and rural communities without access to clean water.

“Our vision is to build a world where no man shall face prolonged thirst,” said David Pong, WateROAM’s chief executive.

(more…)

PNNL scientist Jian Zhi Hu shows a tiny experimental battery mounted in NMR apparatus.Image: PNNL

PNNL scientist Jian Zhi Hu shows a tiny experimental battery mounted in NMR apparatus.
Image: PNNL

While working on a unique lithium-germanide battery, Pacific Northwest National Laboratory (PNNL) researchers knew something was happening inside the battery to dramatically increase its energy storage capacity, but they couldn’t see it. With no way to analyze the reaction occurring, the researchers could not understand the process. In order to solve the problem, the researchers developed a novel nuclear magnetic resonance (NMR) technique to allow insight and understanding of the electrochemical reactions taking place in the battery. Essentially, they have developed an NMR “camera.”

In the end, this leaves the scientists with not only a novel lithium-germanide battery with a distinctly high energy density, but also an NMR device that can be used to examine reactions as they happen inside the battery.

This from PNNL:

By using the NMR process to look inside the battery and observe this reaction as it happened, the scientists found a way to protect the germanium from expanding and becoming ineffective after it takes on lithium. The secret proved to be forming the germanium into tiny “wires” and encasing them in small, protective carbon tubes to limit the expansion. This technique significantly stabilizes battery performance. Without embedding germanium in carbon tubes, a battery performs well for a few charging-discharging cycles, but fades rapidly after that. Using the “core-shell” structure, however, the battery can be discharged and charged thousands of times.

(more…)