From Food Waste to Fuel

The new development will curtail or reduce the atmospheric concentration of greenhouse gases.Image: University of Cincinnati

The new development will curtail or reduce the atmospheric concentration of greenhouse gases.
Image: University of Cincinnati

The United States is wasting food at an alarming rate. According to the Food and Agriculture Organization of the United States, the country wastes 40 percent of all food produced—amounting to 1.3 billion tons of food waste produced.

But extra garbage and financial strain are not the only things food waste produces, it also generates a huge amount of greenhouse gas during decomposition. More specifically, global food waste creates 3.3 billion tons of greenhouse gas annually.

Those numbers were especially alarming to researchers from the University of Cincinnati College of Engineering and Applied Science, who proposed a way to transform food waste into bioenergy back in 2013. That proposal has just been accepted.

(more…)

Cobalt Film Produces Clean Fuel

The lab fabricated the 500-nanometer films by anodyzing a cobalt film electrodeposited on a substrate.Image: Rice University

The lab fabricated the 500-nanometer films by anodizing a cobalt film electrodeposited on a substrate.
Image: Rice University

Researchers from Rice University have discovered an efficient, robust way of drawing hydrogen and oxygen from water.

The researchers have developed a new catalyst of a cobalt-based thin film, which pumps out hydrogen and oxygen to feed fuel cells.

This from Rice University:

The inexpensive, highly porous material invented by the Rice lab of chemist James Tour may have advantages as a catalyst for the production of hydrogen via water electrolysis. A single film far thinner than a hair can be used as both the anode and cathode in an electrolysis device.

(more…)

Novel Self-Powered Camera

This lens of this new camera acts like a solar panel.Image: Columbia University

This lens of this new camera acts like a solar panel. Click image to enlarge.
Image: Columbia University

Who needs batteries to power a camera? Engineers from Columbia University are working on a novel design in which the pixels of the camera not only capture an image, they also collect light as an energy source.

The engineers are researching a commonality between a typical camera and solar panels: photodiodes. Each device has always used photodiodes, but in different ways.

Engineers plan for the new camera to use photodiodes in both functions.

(more…)

Dan Fatton, ECS Director of Development & Membership Services, recently came across this article on the validity of climate reporting from Columbia Journalism Review.

The internet is a wonderful place to express opinions, foster ideas, and gain knowledge. However, sometimes facts an opinions swirl together, creating content presented as truth with very little credibility.

This issue is specifically prevalent in the area of climate change. Now, the (somewhat ironically named) group known as Climate Feedback is working to improve the credibility of climate journalism on the web.

(more…)

ECS Podcast – Subhash C. Singhal of PNNL

This week we’re sitting down with Subhash C. Singhal of Pacific Northwest National Laboratory (PNNL), a world leader in the study of solid oxide fuel cells and one of the lead organizer of our upcoming Glasgow conference. Listen as we explore the culture of national laboratories and industry, the future of solid oxide fuel cells, Singhal’s upbringing in India, and more!

Listen below and download this episode and others for free though the iTunes Store (search “ECS Podcast”), SoundCloud, or our RSS Feed.

(more…)

U.S. to Have Transformative Year in Energy

This year is shaping up to be a very green for the American energy sector. U.S. power emissions are expected to fall to a two-decade low in light of the year of “de-carbonization”.

Bloomberg New Energy Finance reports that CO2 emissions from the power sector should drop to their lowest levels since 1994.

The factors most connect to this decline include:

  • The instillation of more renewables than ever before—with around 18 new GW coming online.
  • A record year for coal retirements—forecasting 23GW to come offline.
  • The burning of more natural gas in 2015 than ever before.

(more…)

Ushering in Next-Gen Batteries, Fuel Cells

ECS member

ECS member Shumin Fang was a contributor in a development that could dramatically improve the efficiency of batteries and fuel cells.
Image: Nature Communications

Sometimes the tiniest things could have the biggest impact—especially when it comes to battery technology.

New research from a collaborative team of engineers from Clemson University and the University of South Carolina developed a new material that could boost batteries’ power and help power plants.

ECS student member Shumin Fang of the University of South Carolina was a collaborator on the study. (Take a look at his paper on solid oxide fuel cells.)

The new material acts as a superhighway for ions, allowing for more powerful batteries and boosting the general efficiency of energy conversion.

Because batteries and fuel cells are limited by how fast ions can pass through the electrolyte, engineers must find a mix of electrolyte ingredients that allows for fast movement. This study proposes the answer to this in gadolinium doped ceria.

(more…)

Aluminum Battery to Outpace Li-ion (Video)

A team of Stanford University researchers have developed a high-performance aluminum battery.Image: YouTube/Stanford University

A research team from Standford University has developed a high-performance aluminum battery.
Image: YouTube/Stanford University

Researchers have been attempting to make a commercially viable aluminum-ion battery for years. Now, a team from Stanford University may have developed just the thing to outpace widely used lithium-ion and alkaline batteries.

The new aluminum-ion battery demonstrates high performance, a fast charging time, long-lasting cycles, and is of low cost to produce.

“We have developed a rechargeable aluminum battery that may replace existing storage devices, such as alkaline batteries, which are bad for the environment, and lithium-ion batteries, which occasionally burst into flames,” said Hongjie Dai, a professor of chemistry at Stanford.

The researchers were able to achieve this novel battery by applying graphite as the cathode material.

(more…)

The Excrevator will help put an end to emptying pit latrines by hand.Image: NC State University

The Excrevator will help put an end to emptying pit latrines by hand.
Image: NC State University

Critical technology gaps in water, sanitation, and hygiene are being faced all over the world. According to UNICEF, 2.5 billion people—36 percent of the world’s population—don’t have access to a toilet. Due to this, many people in the developing world either practice open defecation or utilize pit latrines. In turn, this leads to a high risk of contracting diseases ranging from typhoid to hepatitis.

Tate Rogers, an engineering student from North Carolina State University, decided that something has to be done about this. In 2011, Rogers began developing a device that would help those in the developing world more safely deal with raw sewage.

It’s four years later, and the project is still under way—but it’s beginning to come to fruition.

(more…)

They hybrid supercapacitor can store large amounts of energy, recharge quickly, and lost for more than 10,000 recharge cycles.Image: UCLA

The hybrid supercapacitor can store large amounts of energy, recharge quickly, and last for more than 10,000 recharge cycles.
Image: UCLA

Researchers from UCLA’s California NanoSystems Institute (CNSI) have developed a new generation of supercapacitors that not only emphasizes the best inherent properties of the supercapacitor itself, but also combines it with some of the best qualities of batteries to make a new energy storage medium.

The new supercapacitor is paper-thin and has an extremely fast recharge time. Additionally, it can last more than 10,000 recharge cycles.

Researchers believe this new development will yield real-world potential to address energy issues and improve personal electronics.

“The microsupercapacitor is a new evolving configuration, a very small rechargeable power source with a much higher capacity than previous lithium thin-film microbatteries,” said Maher El-Kady, co-author of the study and postdoctoral scholar.

(more…)