ECS Podcast – Subhash C. Singhal of PNNL

This week we’re sitting down with Subhash C. Singhal of Pacific Northwest National Laboratory (PNNL), a world leader in the study of solid oxide fuel cells and one of the lead organizer of our upcoming Glasgow conference. Listen as we explore the culture of national laboratories and industry, the future of solid oxide fuel cells, Singhal’s upbringing in India, and more!

Listen below and download this episode and others for free though the iTunes Store (search “ECS Podcast”), SoundCloud, or our RSS Feed.

(more…)

U.S. to Have Transformative Year in Energy

This year is shaping up to be a very green for the American energy sector. U.S. power emissions are expected to fall to a two-decade low in light of the year of “de-carbonization”.

Bloomberg New Energy Finance reports that CO2 emissions from the power sector should drop to their lowest levels since 1994.

The factors most connect to this decline include:

  • The instillation of more renewables than ever before—with around 18 new GW coming online.
  • A record year for coal retirements—forecasting 23GW to come offline.
  • The burning of more natural gas in 2015 than ever before.

(more…)

Ushering in Next-Gen Batteries, Fuel Cells

ECS member

ECS member Shumin Fang was a contributor in a development that could dramatically improve the efficiency of batteries and fuel cells.
Image: Nature Communications

Sometimes the tiniest things could have the biggest impact—especially when it comes to battery technology.

New research from a collaborative team of engineers from Clemson University and the University of South Carolina developed a new material that could boost batteries’ power and help power plants.

ECS student member Shumin Fang of the University of South Carolina was a collaborator on the study. (Take a look at his paper on solid oxide fuel cells.)

The new material acts as a superhighway for ions, allowing for more powerful batteries and boosting the general efficiency of energy conversion.

Because batteries and fuel cells are limited by how fast ions can pass through the electrolyte, engineers must find a mix of electrolyte ingredients that allows for fast movement. This study proposes the answer to this in gadolinium doped ceria.

(more…)

Aluminum Battery to Outpace Li-ion (Video)

A team of Stanford University researchers have developed a high-performance aluminum battery.Image: YouTube/Stanford University

A research team from Standford University has developed a high-performance aluminum battery.
Image: YouTube/Stanford University

Researchers have been attempting to make a commercially viable aluminum-ion battery for years. Now, a team from Stanford University may have developed just the thing to outpace widely used lithium-ion and alkaline batteries.

The new aluminum-ion battery demonstrates high performance, a fast charging time, long-lasting cycles, and is of low cost to produce.

“We have developed a rechargeable aluminum battery that may replace existing storage devices, such as alkaline batteries, which are bad for the environment, and lithium-ion batteries, which occasionally burst into flames,” said Hongjie Dai, a professor of chemistry at Stanford.

The researchers were able to achieve this novel battery by applying graphite as the cathode material.

(more…)

The Excrevator will help put an end to emptying pit latrines by hand.Image: NC State University

The Excrevator will help put an end to emptying pit latrines by hand.
Image: NC State University

Critical technology gaps in water, sanitation, and hygiene are being faced all over the world. According to UNICEF, 2.5 billion people—36 percent of the world’s population—don’t have access to a toilet. Due to this, many people in the developing world either practice open defecation or utilize pit latrines. In turn, this leads to a high risk of contracting diseases ranging from typhoid to hepatitis.

Tate Rogers, an engineering student from North Carolina State University, decided that something has to be done about this. In 2011, Rogers began developing a device that would help those in the developing world more safely deal with raw sewage.

It’s four years later, and the project is still under way—but it’s beginning to come to fruition.

(more…)

They hybrid supercapacitor can store large amounts of energy, recharge quickly, and lost for more than 10,000 recharge cycles.Image: UCLA

The hybrid supercapacitor can store large amounts of energy, recharge quickly, and last for more than 10,000 recharge cycles.
Image: UCLA

Researchers from UCLA’s California NanoSystems Institute (CNSI) have developed a new generation of supercapacitors that not only emphasizes the best inherent properties of the supercapacitor itself, but also combines it with some of the best qualities of batteries to make a new energy storage medium.

The new supercapacitor is paper-thin and has an extremely fast recharge time. Additionally, it can last more than 10,000 recharge cycles.

Researchers believe this new development will yield real-world potential to address energy issues and improve personal electronics.

“The microsupercapacitor is a new evolving configuration, a very small rechargeable power source with a much higher capacity than previous lithium thin-film microbatteries,” said Maher El-Kady, co-author of the study and postdoctoral scholar.

(more…)

Silicon is the common material used in solar cells and computer chips, but gallium arsenide is an alternative material with many advantages. Image: YouTube/Stanford University

Silicon is the common material used in solar cells and computer chips, but gallium arsenide is an alternative material with many advantages.
Image: YouTube/Stanford University

When we think of chips and solar cells, we think of silicon. However, silicon isn’t the only chip-making material out there.

Researchers from Stanford University are turning their attention away from silicon and are looking toward gallium arsenide to make faster chips and more efficient solar cells.

Gallium arsenide is a semiconductor material with extraordinary properties. Electrons can travel six times faster in gallium arsenide than in silicon, allowing for faster operation of transistors. Unfortunately, cost effectiveness is not one of gallium arsenide’s alluring properties—which has caused researchers to opt for the much cheaper and less effective silicon material.

One single wafer of gallium arsenide could cost up to $5,000, whereas the same size wafer of silicon costs only $5.

(more…)

dahn-researchThe electric car industry is on the rise, but battery performance for these vehicles is still not where it needs to be to implement wide-scale usage. To address this issue, researchers from Dalhousie University have produced a ternary blend of electrolyte additives to improve the performance of the li-ion cell.

An open access paper recently published in the Journal of The Electrochemical Society (JES) details a novel development in electrolyte additives that, once applied to the li-ion cell, demonstrate a very high charge-discharge capacity.

The team began their study by investigating the performance of NMC pouch cells and electrolytes with various sulfur or phosphorus electrolyte additives.

They concluded that the new additive will improve the life cycle performance of the li-ion battery, as well as improve upon its safety.

(more…)

Graphene Light Bulb

When it comes to light bulbs, we’ve seen a lot of transformation since Thomas Edison’s practical incandescent bulb. Since then we’ve delved into fluorescent lights, and more recently, LEDs. Now we’re moving on to the next big thing in light bulbs, and that just may be graphene.

The new bulb is projected to last longer and cut energy use by 10 percent.

(more…)

Costa Rica Goes 100% Green

One small step for renewable energy, and one giant leap for Costa Rica.

Costa Rica has not burned one fossil fuel in over 75 days. The country is currently running completely on renewable energy, primarily due to heavy rains and geothermal energy.

The country is now producing enough electricity though hydropower systems, such as pump storage and run-of-the-river plants, to power the majority of Costa Rica. Pair that with additional geothermal, solar, and wind energy sources and 100 percent renewable energy efficiency is achieved.

(more…)

ECS
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.