Hybrid Supercapacitors – From Laboratory to Industrial Development

A. Laforgue1,*, P. Simon2-*, J.F. Fauvarque1-**, M. Conte1, J.F. Sarrau1 and P. Lailler1

1 Laboratoire d’Electrochimie Industrielle du CNAM (Paris – France),
2 Laboratoire de Chimie des Matériaux Inorganiques et Energétique (Toulouse – France),
3 Energy division of ENEA (Roma – Italia).
4 CEAC-Exide (Grenoble – France).

Supercapacitors are promising devices for energy storage because their characteristics are between those of dielectric capacitors and those of conventional batteries. Three different main types of supercapacitors are described in the literature: carbon/carbon [1], metal oxide [2], and electronically conducting polymers [3-5] systems. Nowadays, new types of hybrid supercapacitors are studied, to improve the performances of these systems [6-8].

The work presented is the result of a four years collaboration between European university laboratories and industries (within project no JOE3-CT97-0047 of the European Commission), to optimise a new type of hybrid supercapacitors with a conductive polymer as positive electrode and an activated carbon as negative electrode.

The conductive polymer chosen was the poly-3-methylthiophene (pMeT), electrochemically synthesised under powder form. The active materials were processed into composite electrodes with 5% binders (CMC-PTE).

Figure 1 presents pMeT p-doping. The capacity obtained was 50 mAh/g with a coulombic efficiency over 99%. The galvanostatic cycling of the cell is presented on Figure 2. The polymer p-doping domain was strictly respected to avoid polymer degradation, meanwhile the quantity of activated carbon was adjusted to obtain the maximum cell voltage. The optimised cells cycled between 0.8 V and 3 V, pMeT proved 270 F/g and the Picactiv SC 105 F/g. The cell reached a specific maximum energy of 45 Wh/kg of active layer (active materials + conducting additives + binders), and the maximum power reached was 35 kW/kg. These performances were maintained with less than 20% of loss over 1000 cycles.

The system was developed at industrial level with 2x25 electrodes prototypes. The binder technology allowed to co-laminate the active materials on the aluminium current collectors.

The main characteristics and performances are resumed in Table 1. The capacity obtained was around 1500 F for 389 g modules. The maximum energy obtained was 5Wh/kg of total module for a maximum power of 2 kW/kg.

Acknowledgements: The authors want to thank the European Commission for financial support.

* email: simon@chimie.ups-tlse.fr

Table 1: characteristics and performances of an industrial prototype pMeT/Picactiv SC.

Figure 1: Cyclic voltammetry of pMeT at 20 mV/s.

Figure 2: Galvanostatic cycle of a pMeT/Picactiv SC supercapacitor cell.

References