Synthesis of Fine Particles of LiFePO₄ Cathode Material for Lithium Ion Battery using a Hydrothermal Method

Hirokazu Okawa, Kyuro Sasaki, Yoshifumi Katayama, Kazuyoshi Uematsu, Kenji Toda, Mineo Sato
Department of Earth Science and Technology, Faculty of engineering, AKITA UNIVERSITY
1-1 Tegata-Gakuenmachii, Akita City, 010-0852, Japan
Department of Chemistry and Chemical Engineering, Faculty of engineering, NIIGATA UNIVERSITY
Ikarashi 2-no-cho, Niigata City, 950-2181, Japan

Iron is expected as a positive electrode material because of its large Clarke number. In this reason, we have been interesting in materials with iron and been studying. Fe₂(SO₄)₃ is the most interesting materials because of the highest voltage, 3.7V, v.s. Li/Li⁺ in materials with iron. However, cycle performance is quite poor. And then, we studied method to improve cycle performance of Fe₂(SO₄)₃ and reported¹. We succeeded to make Fe₂(SO₄)₃ exhibits good cycle performance. But useful capacity was become about 65mAh/g (theoretical capacity: 130Ah/g), the value is very little for use as a Lithium iron battery.

Then, we looked for other material with iron and focused LiFePO₄. It shows a high voltage discharge curve, 3.4V v.s. Li/Li⁺. 3.4V discharge region shows extremely flat. Theoretical capacity of LiFePO₄ is, 170mAh/g, sufficient to be used as Lithium ion battery (LiCoO₂: 274mAh/g, LiMn₂O₄: 148mAh/g). However reported² discharge capacity of LiFePO₄ is not so good (115mAh/g, 0.5mA/cm²).

In this study, we have tried to obtain good cycle performance and improve discharge capacity of LiFePO₄ by making fine particle of LiFePO₄ using hydrothermal method. In addition, we used Polyethylene Glycol to a starting solution. Furthermore we added Polyvinyl Alcohol to the sample to improve the electric conductivity. As the result, we improved below 3points.

1. Succeeded in improving Discharge capacity.
 5th Discharge capacity = 130mAh/g (0.5mA/cm²)

 10⁵th Discharge capacity = 132mAh/g (keep 100% v.s. 5th discharge capacity)

3. Succeeded in discharge with large current
 Discharge were conducted over 3mA/cm² (80mAh/g)

Fig.1 Charge / Discharge curves of LiFePO₄ with carbon coating at 0.5mAh/g.

Abs. 293, 206th Meeting, © 2004 The Electrochemical Society, Inc.

1) H. Okawa, M Sato, Proc. of 2000 Int. Chemical Congress of Pacific Basin Societies(Honolulu, USA)
 No.06-27(1-3) (2000)