New Method of Producing Nano-sized LiCoO₂ Particles for Li-ion Batteries

Tetsuya Kawamura, Masami Makidera**, Kazumichi Koga**, Shigeto Okada*, Norio Miura*** and Jun-ichi Yamaki*

Japan Science and Technology Agency
*Institute for Materials Chemistry and Engineering, Kyushu University
**Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
***Art, Science and Technology Center for Cooperative Research, Kyushu University

Kasuga Koen 6-1, Kasuga 816-8580, Japan

Introduction

Li-ion cells are widely used in many portable devices. However, their power density is not sufficient for use in electric vehicles. One of the most effective ways to improve power density is to use very fine cathode particles. We report here on a new method of preparing nano-sized LiCoO₂ powder, that is finer than that produced by standard methods[1,2].

Experiment

A nanodiameter lithium cobaltate sample was prepared using the new excess-lithium method. Reagent grade CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O (Wako Pure Chemical Industries) were mixed in water at a molar ratio of 5, 9, 13 and 21 to 1 (4, 8, 12 and 20 molar ratio of lithium being the excess). After the water evaporated, the mixture was calcined at 600°C for 6h in air. The calcined product was washed with distilled water to remove impurities and the samples were dried at 80°C in air for 24h. Finally, we obtained very fine LiCoO₂ particles.

The sample structure was characterized by X-ray diffraction (RINT2100HLR/PC, Rigaku). The particle morphology of the samples was observed using a scanning electron microscope (JSM-6340F, JEOL).

Results and discussion

When the molar ratios of CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O were 1:1 (calcined at 600°C for 6h), the LiCoO₂ particle size was about 500 nm (see Fig. 1). This method is the conventional sol-gel method.

When the molar ratios of CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O were 9:1, the LiCoO₂ particles were smaller than those compounded by the conventional sol-gel method. The LiCoO₂ particle size was about 25 nm, and the particles were almost uniform in size (see Fig. 2). Added excessive lithium acetate becomes lithium carbonate by calcining. It seems that lithium carbonate separates LiCoO₂ particles and suppresses sintering of the particles.

When molar ratios of CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O were 21:1, the LiCoO₂ particles became needle-like, with a thickness of about 5 nm and a length of about 60 nm (see Fig. 3).

References

Fig. 1 SEM image of LiCoO₂ sample formed with a 1:1 molar ratio of CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O.

Fig. 2 SEM image of LiCoO₂ sample formed with a 9:1 molar ratio of CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O.

Fig. 3 SEM image of LiCoO₂ sample formed with a 21:1 molar ratio of CH₃COOLi • 2H₂O and (CH₃COO)₂Co • 4H₂O.