Schottky Barrier Height Engineering with a Strained-Si channel for Sub-50-nm Gate Schottky Source/Drain MOSFETs.

Keiji Ikeda, Yoshimi Yamashita, Akira Endoh, Kohki Hikosaka and Takeshi Mimura
Fujitsu Laboratories, Ltd.
10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.

INTRODUCTION
The Schottky source/drain MOSFET (SSD-MOSFET) (1,2) is an attractive design for ballistic MOSFETs because it has the potential to allow high-energy carrier injection from a metal source to an intrinsic channel. This structure offers a new insight regarding nanoscale MOSFETs. However, achieving high-drive current is difficult because of the relatively high potential barrier (Schottky barrier) at the source. To overcome this problem, we have proposed Schottky-barrier-height (SBH) engineering through semiconductor bandgap modulation with the introduction of SiGe alloy and germanosilicide(3). However, a simpler material system is preferable for mass-production SBH engineering.

In this paper, we demonstrate a new SBH engineering technique where strain is induced to lower the conduction and valence bands lowering of Si channel. We found the SBH at the source/channel junction could be modulated by tensile-stress applied to the Si channel. The current drivability of a strained-Si channel SSD-pMOSFET was thus improved partly from barrier reduction and partly from mobility enhancement.

DEVICE FABRICATION
Figure 1 is a TEM micrograph of a fabricated 50-nm-gate device. Epitaxial layers were a 2-µm-thick SiGe graded buffer, a 1-µm-thick relaxed SiGe buffer, and a 20-nm-thick strained Si channel. We intentionally left these layers undoped (<1×10^16 cm^-3) and varied the Ge content (x=10, 20, or 34%) in the SiGe buffer layer for comparison. The source and drain junction-depths were about 12 nm. Platinumsilicide (PtSi) formed only within the strained-Si layer. The SiGe buffer layer was not silicided (It was confirmed by the SIMS depth profile).

DEVICE CHARACTERISTICS
Figure 2 compares the drain current curves of a 200-nm gate-length device with a Ge content of either 20 or 34%. A 61% improvement was observed for x=34% compared to x=20%. In addition, the Gm curves for devices at a low drain voltage (Vd=-0.05V) showed a significant increase in Gm (Fig. 3). These drive current and transconductance improvements were caused partly by the reduced barrier height for the strained-Si channel and partly by the higher mobility of holes in the strained-Si channel.

Figure 4 compares the gate length (Lg) dependence of Ion @Vg=Vd=-1.5V with various Ge contents. When Lg was 50nm, Ion for x=34% increased by more than sixfold compared with that for x=10%.

CONCLUSIONS
For the first time, we have demonstrated strained-Si channel SSD-MOSFETs. We also showed that strain can be used to reduce the SBH as an effective means of improving current drivability. By combining strained-Si channel SSD-MOSFETs with SOI substrates (4), we can reduce the off-state leakage current and apply metal gate technology to adjust the threshold voltage. The strained-Si channel SSD-MOSFET is therefore a promising design for future nanoscale-MOSFETs.

REFERENCES
(4) K. Rim et al., IEDM Tech Dig., 49 (2003).