A new flexible, transparent electrical device inspired by electric eels could lead to body-friendly power sources for implanted health monitors and medication dispensers, augmented-reality contact lenses, and countless other applications, researchers report.

The soft cells—made of hydrogel and salt—form the first potentially biocompatible artificial electric organ that generates more than 100 volts. It produces a steady buzz of electricity at high voltage but low current, a bit like an extremely low-volume but high-pressure jet of water. It could be enough to power a small medical device like a pacemaker.

While the technology is preliminary, Michael Mayer, a professor of biophysics at the Adolphe Merkle Institute of the University of Fribourg in Switzerland and the paper’s corresponding author, believes it may one day be useful for powering implantable or wearable devices without the toxicity, bulk, or frequent recharging that come with batteries.

(more…)

National Academy of InventorsECS fellow Plamen Atanassov was recently elected as a 2017 National Academy of Inventors Fellow. Atanassov is among 155 renowned academic inventors awarded this year’s fellowship, which is regarded as the highest professional accolade bestowed to academic inventors who have demonstrated a prolific spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development, and welfare of society.

Atanassov, a Distinguished Professor Chemical and Biological Engineering and Director of the University of New Mexico Center for Micro-Engineered Materials, focuses the majority of his research efforts on developing catalysts for fuel cells. His work in creating a platinum-free catalyst for hydrogen fuel cells has helped overcome major barriers in applications such as hydrogen-powered vehicles, which could play a major role in transforming transportation and reducing greenhouse gasses.

(more…)

A team of researchers from MIT recently demonstrated a new electrochemical method to study thermodynamic processes in an ultra-high temperature molten oxide. In an effort to find new insights into the thermodynamic properties of refractory materials, researchers have developed a container-less electrochemical method to study thermodynamic properties of materials like aluminum oxide, which melts at temperatures above 2,000 degrees Celsius.

The finding were reported in the open access paper, “Electrochemical Study of a Pendant Molten Alumina Droplet and Its Application for Thermodynamic Property Measurements of Al-Ir,” which was recently published in the Journal of The Electrochemical Society.

“We have a new technique which demonstrates that the rules of electrochemistry are followed for these refractory melts,” says senior author Antoine Allanore, an associate professor of metallurgy and member of ECS. “We have now evidence that these melts are very stable at high temperature, they have high conductivity.”

(more…)

New ECS Transactions: ABAF 2017

A new issue of ECS Transactions (ECST) has just been published. This issue incorporates 42 papers presented at the 18th International Conference on Advanced Batteries, Accumulators and Fuel Cells (ABAF 2017). This conference was held in Brno, Czech Republic, September 10-13, 2017.

ECST Volume 81, Issue 1 is now available in the ECS Digital Library. This issue is also available for purchase as an electronic (PDF) edition through the ECS Online Store.

Below is an excerpt from an article published in the winter 2017 edition of Interface.

By: Durga Misra, New Jersey Institute of Technology

Winter 2017 InterfaceThe explosive progress of information technology and 5th generation communication technology enables the introduction of the Internet of Things, where the network of physical objects—devices, vehicles, and buildings embedded with sensors, electronics, software, and network connectivity—permits these physical objects to collect and exchange data. The use of dielectric materials in sensors for a multitude of applications such as self-driving cars has made the dielectric science and technology research even more significant than before.

More than seventy years ago, in 1945, it all started with establishing the Electric Insulation Division in ECS to offer an interdisciplinary forum to discuss the science of the materials used for electrical insulation in power transmission. With the advancement of technology, when integrated circuits became popular, the division became the Dielectrics and Insulation Division in 1965. In 1990, it became the Dielectric Science and Technology Division due to extensive growth in electronic manufacturing technology. Today, the division still provides a strong interdisciplinary research environment.

In this issue of Interface we have focused on some of the current topics that are an integral part of current and future technologies.

(more…)

By: Brian Nosek, Center for Open Science

JournalsIn the Fall of 2011, Sarah Mackenzie, the maid of honor at my wedding, was diagnosed with a rare form of ovarian cancer. Sarah and her family were motivated to learn as much as they could about the disease to advocate for her care. They weren’t scientists, but they started searching the literature for relevant articles. One evening, Sarah called us, angry. Every time she found an article that might be relevant to understanding her disease, she ran into a paywall requiring $15-$40 to access it. Public money had paid for the research, yet she was barred from making any use of it. Luckily, she had us. Most people in Sarah’s position don’t have the luxury of friends at wealthy academic institutions with subscriptions to the literature.

During this time, I was pursuing an interest in the business models of scholarly communication. I wanted to understand the ways in which these models interfered with the dissemination of knowledge that could improve quality of life. Sarah’s experience illustrated one key part of the problem–the outcomes of research should be public goods, but the business models of publishing make them exclusive goods. Lack of access to published literature limits our ability to apply what we know to improving others’ quality of life. If doctors can’t access the literature, they can’t keep up with the latest innovations for care. If policy makers can’t access the literature, they can’t create evidence based policies. To advance solutions and cures, the outcomes of research must be open.

(more…)

ECS AMA: Post Your Questions Now!

ECS’s Ask Me Anything thread is officially live on /r/Science.

Use the link below to visit the thread and post your questions about open science, the Free the Science initiative, and the Society’s forthcoming preprint server, ECSarXiv.

Visit the AMA!

Please note: you will need a Reddit account in order to post questions, comment, or vote in the discussion. If you do not already have one, you can create a free account on Reddit’s website.

Revisit the thread later today, from 12:00 pm to 1:00 pm EST. During this time, ECS President Johna Leddy and ECS Transactions Editor Jeffrey Fergus will respond to questions that have been posted, prioritizing the ones that have received the most upvotes.

(more…)

Focus IssuesSubmit your manuscripts to the Journal of The Electrochemical Society (JES) Focus Issue on The Brain and Electrochemistry, Honoring R. Mark Wightman and Christian Amatore by March 11, 2018.

This focus issue of the JES is devoted to work at the juncture of electrochemistry, the brain, and the nervous system.

The issue will provide a forum for the discussion of research and developments on how the central (CNS) and the peripheral nervous systems (PNS) can be viewed and studied in terms of electrical circuits and electrochemical sensors, reactions and methods. This issue, as well as the The Brain and Electrochemistry symposium held at the 232nd ECS Meeting in October 2017, was inspired by the works of Christian Amatore from the Ecole Normale Supérieure and Mark Wightman from the University of North Carolina at Chapel Hill. They dedicated their careers to this topic, trained and influenced countless researchers over the years.

(more…)

Most Popular Articles of 2017

Year EndThe following is a roundup of the top articles published on the ECS Redcat Blog in 2017.

1. Impact factors on the rise

The journal impact factors for the Journal of The Electrochemical Society and ECS Journal of Solid State Science and Technology both rose by 8 percent this year. In July, Andrew Ryan, publication specialist at ECS, reported on the growth and what it means for ECS publications.

As a nonprofit society in constant competition with larger publishers with greater resources, ECS prides itself on disseminating the most groundbreaking and sought-after research to those who can use it to confront and resolve the world’s issues. This year’s JIF data indicates that ECS is not only doing its job, but steadily improving at it.

(more…)

BatteryNew research from Sandia National Laboratory is moving toward advancing solid state lithium-ion battery performance in small electronics by identifying major obstacles in how lithium ions flow across battery interfaces.

The team of researchers, including ECS member Forrest Gittleson, looked at the nanoscale chemistry of solid state batteries, focusing on the area where the electrodes and electrolytes make contact.

“The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials,” says Farid El Gabaly, coauthor of the recently published work. “In this project, all of the materials are solid; we don’t have a liquid-solid interface like in traditional lithium-ion batteries.”

According to El Gabaly, the faster the lithium can travel from one electrode to the other, the more efficient the batteries could be.

(more…)