Electric VehiclesAs sustainable technologies continue to expand into the marketplace, the demand for better batteries rises. Many researchers in the field are looking toward all-solid-state batteries as a promising venture, citing safety and energy density properties. Now, one company is looking to take that work from the lab to the marketplace.

Electric car maker Fisker has recently filed patents for solid state lithium-ion batteries, stating that mass scale production could begin as soon as 2023. The patent covers novel materials and manufacturing processes that the company plans to use to develop automotive-ready batteries.

Unlike other types of rechargeable batteries that use liquid electrodes and electrolytes, solid state batteries utilize both solid electrodes and solid electrolytes. While liquid electrolytes are efficient in conducting ions, there are certain safety hazards attached (i.e. fires if the battery overheats or is short-circuited). In addition to better safety, solid electrodes could also impact battery cost and energy density, opening up new possibilities for large scale storage applications.

(more…)

Green chemistryNew research is building a bridge from nature’s chemistry to greener, more efficient synthetic chemistry.

Researchers analyzed biocatalysts evolved by nature for their effectiveness in a variety of synthetic chemical reactions. The results, published in Nature Chemistry, open the door to promising practices for chemists, pointing to not only more efficient but also more powerful tools for chemists.

The researchers started with microorganisms that have, over the millennia, developed complex chemical reactions to create molecules with important biological activity for various purposes, such as defense mechanisms. The scientists then analyzed the chemical pathways that give rise to these potentially useful molecules to determine how they can be repurposed to create compounds synthetically in the lab.

“Nature has evolved catalytic tools that would enable chemists to build molecules that we can’t easily build just using traditional chemistry,” says senior study author Alison Narayan, assistant professor at the University of Michigan Life Sciences Institute. “Our work bridges the two worlds of biosynthesis and synthetic chemistry.”

(more…)

Did you know that ECS is partnered with Curran Associates to provide print-on-demand (POD) editions of a nearly complete catalogue of ECS Transactions issues? For all those who prefer a print edition, you are in luck!

The enhanced issues from ECS Transactions volume 80 (232nd ECS Meeting in National Harbor, MD) are now available for purchase as POD softcover editions from Proceedings.com. More information can be found from the links below:

In addition to the National Harbor enhanced issues, Curran offers hundreds of other print-on-demand ECST titles dating back to 2006. Visit Proceedings.com for a complete listing of available issues.

Matt Murbach

Matthew Murbach, co-founder of Battery Informatics, Inc.

Matthew Murbach, founding president of the ECS student chapter at the University of Washington (UW) and motivating force behind the launch of the ECS Data Sciences Hack Day, has been named to the Forbes 30 Under 30 list in the area of energy. According to Forbes, Murbach was recognized for his work “to commercialize battery management breakthroughs to enable faster charging, finer control over degradation and longer lifetimes.”

Murbach is co-founder of Battery Informatics, Inc. and a PhD student in chemical engineering at the University of Washington. Murbach’s PhD research is exploring new ways to diagnose the state of health in batteries, a critical and expensive asset in the emerging low carbon energy economy.

Battery Informatics is a next-generation battery management company focused on capturing the maximum value of energy storage through software solutions. The company is licensing UW intellectual property to extract the maximum value from these battery assets over the whole battery lifecycle. Just this month, they are flipping the switch on their first customer installation.

(more…)

Toyota Fellowships Come Full Circle

Joaquin Rodriguez Lopez

Joaquin Rodriguez Lopez presenting his work at the Toyota Research Institute of North America in Ann Arbor, Michigan.

In 2014, ECS and Toyota Research Institute of North America came together to establish the ECS Toyota Young Investigator Fellowship to support young researchers working in green energy technology. The partnership between ECS and Toyota aims to leverage the Society’s network of researchers, awarding fellowship winners a minimum of $50,000 to pursue novel research over a one year period.

“We try to give folks the opportunity to do research that is a little more outside of the box,” said Paul Fanson, manager of Toyota’s North American Research Strategy Office, “where they might have difficulty getting funding somewhere else.”

As this year winds down and the 2016-2017 fellows come to the tail end of the research period, fellowship winners Elizabeth Biddinger, City College of New York; Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; and Joshua Snyder, Drexel University recently took their work to Toyota’s site in Ann Arbor, Michigan, to report their findings, connect with industry researchers, and explore opportunities that extend beyond the funding time period.

(more…)

ECS Lecture with Steven Chu

The ECS Lecture during the 232nd ECS Meeting in National Harbor, MD, was delivered by Steven Chu. Chu is currently the William R. Kenan, Jr., Professor of Physics and Professor of Molecular & Cellular Physiology at Stanford. Previously, he served as U.S. Secretary of Energy under President Obama and was the co-recipient of the 1997 Nobel Prize in Physics for his contribution to laser cooling and atom trapping.

Chu’s ECS Lecture, “The Role of Electrochemistry in our Transition to Sustainable Energy,” focused on the risks society is facing due to changing climate, the evolving energy landscape, and the role of electrochemistry in providing critical technological advances.

During his lecture, Chu outlined the risks that modern society faces, which demand technological innovation to provide solutions. Namely, Chu stated that the rising climate poses significant risks to the global community. According to Chu, the Earth has warmed by an alarming one degree Celsius since 1975.

“One degree Celsius does not sound like a lot, but just a couple of degrees warmer would make a dramatic difference,” Chu said. “If the Earth does warm by two degrees Celsius, Boston will be underwater.”

(more…)

Carbon dioxideAfter remaining steady for three years, global fossil fuel emissions are rising again and may increase again next year. But improved energy efficiency and a booming renewables market may offer a bit of a silver lining.

“This year’s result is discouraging, but I remain hopeful,” says Rob Jackson, professor at the School of Earth, Energy & Environmental Sciences at Stanford University and chair of the Global Carbon Project, which released a series of reports in Environmental Research Letters.

“In the US, cities, states, and companies have seized leadership on energy efficiency and low-carbon renewables that the federal government has abdicated.”

The report appears with data published simultaneously in an Earth System Science Data Discussions paper led by Corinne Le Quéré of the University of East Anglia, who is also part of the Global Carbon Project.

Together, they forecast that global fossil fuel emissions will reach a record 37 billion tons of carbon dioxide in 2017, with total emissions reaching a record 41 billion tons, including deforestation. Atmospheric carbon dioxide concentration reached 403 parts per million in 2016, and is expected to increase by 2.5 parts per million in 2017.

(more…)

Meeting TalksTopic Close-up #5

Symposium B04: The International Symposium on Nanomaterials: Focus – Korea

Symposium Focus: This mega-symposium is dedicated to cover science and applications in nanocarbons and other nanoscale materials, and present the contemporary state-of-the-art of this field in Korea. It is sponsored by the Nanocarbons, Dielectric Science and Technology, and Electronics and Photonics Divisions, and the Interdisciplinary Science and Technology Subcommittee of the Electrochemical Society, along with the Korean Electrochemical Society.

The primary goal of this symposium is to share the most recent results and promote USA-Korea scientific cooperation efforts. Papers are solicited on experimental and theoretical studies related to the basic chemistry, physics, materials science and engineering of nanocarbons, fullerenes, porphyrins, supramolecular, inorganic-organic hybrid and functional materials, nanotubes, graphene and 2D layered materials, as well as on their novel applications in areas such as energy and catalytic conversion, sensors, medicine and biology, electronic and photonic devices, and materials development.

(more…)

A reversible fabric keeps skin a comfortable temperature whatever the weather—and could save energy by keeping us away from the thermostat.

As reported in Science Advances, the double-sided fabric is based on the same material as everyday kitchen wrap and can offer warmth or cooling depending on which side faces out.

“Why do you need to cool and heat the whole building? Why don’t you cool and heat individual people?” says Yi Cui, professor of materials science and engineering at Stanford University, who thought if people could be more comfortable in a range of temperatures, they could save energy on air conditioning and central heating.

Thirteen percent of all of the energy consumed in the United States is due to indoor temperature control. But for every 1 degree Celsius (1.8 degrees Fahrenheit) that a thermostat is turned down, a building can save a whopping 10 percent of its heating energy—and the reverse is true for cooling. So adjusting temperature controls by just a few degrees could have major effects on energy consumption.

(more…)

Topic Close-up #4

Symposium H04: Wearable and Flexible Electronic and Photonic Technologies

Symposium Focus: With the advent of connected living, health and communication, and its proliferation to the development of the internet of things, wearable devices are a critical technology. Underlying advancements in wearable and flexible electronic and photonic technologies, are materials science of new and alternative materials and methods of coating and deposition, characterization of flexible and transparent or plastic electronic devices, the electronics behind new sensor development for wearables and flexible technology, and new device design concepts. This symposium will address all aspects of wearable and flexible devices technology, from materials through working prototypes and provide a leading international forum for the most exciting developments in the fundamental science and device engineering of next-generation electronics and photonics for a whole range of applications.

Invited Speakers and Special Features: Many inspirational speakers and leaders in wearable and flexible science and technology will be featured in this symposium, including Joe Wang, Mark Hersam, Huisheng Peng, Zhong Lin Wang, Bozhi Tian, Yuri Gogotsi and many others. The symposium