Carbon dioxideWhile pursing work on the highly desirable but technically challenging lithium-air battery, researchers unexpectedly discovered a new way to capture and store carbon dioxide. Upon creating a design for a lithium-CO2 battery, the research team found a way to isolate solid carbon dust from gaseous carbon dioxide, all while being able to separate oxygen.

As global industry, technology, and transportation grows, the consumption of fossil fuels has increased. According to the U.S. Environmental Protection Agency, the burning of petroleum-based products has resulted in 6,587 million of metric tons of carbon dioxide released into the environment in 2015. The emission of greenhouse gasses like carbon dioxide trap heat in the atmosphere, which researches have linked the global warming. Because of this, capturing and converting carbon emissions has become a highly researched area.

“The problem with most physical and chemical pathways for CO2 fixation is that their products are gases and liquids that need to be further liquefied or compressed, and that inevitably leads to additional energy consumption and even more CO2 emissions,” says Haoshen Zhou, senior author of the recently published research. “Instead, we are demonstrating an electrochemical strategy for CO2 fixation that yields solid carbon products, as well as a lithium-CO2 battery that can provide the energy necessary for that process.”

(more…)

By: Timothy H. Dixon, University of South Florida

Climate marchThis summer I worked on the Greenland ice sheet, part of a scientific experiment to study surface melting and its contribution to Greenland’s accelerating ice losses. By virtue of its size, elevation and currently frozen state, Greenland has the potential to cause large and rapid increases to sea level as it melts.

When I returned, a nonscientist friend asked me what the research showed about future sea level rise. He was disappointed that I couldn’t say anything definite, since it will take several years to analyze the data. This kind of time lag is common in science, but it can make communicating the issues difficult. That’s especially true for climate change, where decades of data collection may be required to see trends.

A recent draft report on climate change by federal scientists exploits data captured over many decades to assess recent changes, and warns of a dire future if we don’t change our ways. Yet few countries are aggressively reducing their emissions in a way scientists say are needed to avoid the dangers of climate change.

While this lack of progress dismays people, it’s actually understandable. Human beings have evolved to focus on immediate threats. We have a tough time dealing with risks that have time lags of decades or even centuries. As a geoscientist, I’m used to thinking on much longer time scales, but I recognize that most people are not. I see several kinds of time lags associated with climate change debates. It’s important to understand these time lags and how they interact if we hope to make progress.

(more…)

Lithium-ionResearchers have found a new method for finding lithium, used in the lithium-ion batteries that power modern electronics, in supervolcanic lake deposits.

While most of the lithium used to make batteries comes from Australia and Chile, but scientists say there are large deposits in sources right here in America: supervolcanoes.

In a recently published study, scientists detail a new method for locating lithium in supervolcanic lake deposits.

The findings represent an important step toward diversifying the supply of this valuable silvery-white metal, since lithium is an energy-critical strategic resource, says study coauthor Gail Mahood, a professor of geological sciences at Stanford University’s School of Earth, Energy & Environmental Sciences.

(more…)

In May 2017 during the 231st ECS Meeting, we sat down with Doron Aurbach, professor at Bar-Ilan University in Israel, to discuss his life in science, the future of batteries, and scientific legacy. The conversation was led by Rob Gerth, ECS’s director of marketing and communications.

During the 231st ECS Meeting, Aurbach received the ECS Allen J. Bard Award in Electrochemical Science for his distinguished contributions to the field. He has published more than 540 peer-reviewed papers, which have received more than 37,000 citations. Doron serves as a technical editor for the Journal of The Electrochemical Society and is an ECS fellow. His work in fundamental battery research has received recognition world-wide.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

Tackling Semiconductors in China

Some of the participants at the first ISCGC-2017.
Click to enlarge.

The 1st International Semiconductor Conference for Global Challenges (ISCGC 2017) was held in Nanjing, Jiangsu, China, July 16-19, 2017. The conference was jointly sponsored by The Electrochemical Society and the Chinese Physical Society.

The 200-plus attendees from around the world addressed the global challenges of semiconductor science and technology. The conference covered a wide spectrum of semiconductor research areas including growth and characterization, electronic/optoelectronic/power devices and their applications, and energy devices and systems.

On hand were eight keynote and 40 invited speakers. Thirty-seven contributing papers were presented, along with 66 posters. The meeting included 10 invited and keynote speakers from ECS as well as the involvement of five ECS divisions (Electronics and Photonics, Dielectric Science and Technology, Luminescence and Display Materials, Sensors, and Nanocarbons).

“ECS wants to have an influence in this region of the world as to the way scholarly publishing is carried out,” says Roque Calvo, executive director of ECS. “We want to communicate the idea of our Free the Science initiative — embracing open science to further advance research in our fields.”

(more…)

Posted in Meetings
Tagged

SemiconductorThe next generation of feature-filled and energy-efficient electronics will require computer chips just a few atoms thick. For all its positive attributes, trusty silicon can’t take us to these ultrathin extremes.

With two new semiconductors, however, it may be possible.

Electrical engineers have identified two semiconductors—hafnium diselenide and zirconium diselenide—that share or go beyond some of silicon’s desirable traits, starting with the fact that all three materials can “rust.”

“It’s a bit like rust, but a very desirable rust,” says Eric Pop, an associate professor of electrical engineering, who coauthored with postdoctoral scholar Michal Mleczko a paper on the research that appears in the journal Science Advances.

The new materials can also be shrunk to functional circuits just three atoms thick and they require less energy than silicon circuits. Although still experimental, the researchers say the materials could be a step toward the kinds of thinner, more energy-efficient chips demanded by devices of the future.

(more…)

Bacteria-powered Paper Battery

Batteries made of lemons and oranges have been gracing grade school laboratories for years. In addition to fruit-based batteries, now you can make a battery using spit.

The new paper-based bacteria-powered battery can be activated with a single drop of saliva, generating enough power to power an LED light for around 20 minutes.

“The battery includes specialized bacterial cells, called exoelectrogens, which have the ability to harvest electrons externally to the outside electrode,” Seokheun Choi, co-author of the new study, tells Nexus Media. “For the long-term storage, the bacterial cells are freeze-dried until use. This battery can even be used in challenging environmental conditions like desert areas. All you need is an organic matter to rehydrate and activate the freeze-dried cells.”

(more…)

Editor’s note: This briefing was written in a joint collaboration between Admiral Instruments and Zahner Scientific Instruments. Admiral Instruments will be exhibiting (booth 400) at the 232nd ECS Meeting in National Harbor this fall. See a list of all our exhibitors.

lithium batteries

Image: Multiple stacks of lithium batteries

Problem

Methods combining EIS with charge-discharge cycles are among the most powerful tools available to collect in-situ information about electrochemical systems such as battery cells and stacks. However, accurately measuring the rapidly-changing states of the electrodes, electrolytes, and other non-steady-state materials within battery systems is a challenge.

This issue is particularly troublesome when changes in state occur at timescales even shorter than a single charge-discharge cycle or single EIS frequency sweep. Accurately interpreting results from an EIS measurement requires either making the ill-advised assumption of steady-state conditions throughout the duration of a frequency sweep, or accounting for drift effects by using modeling tools that are often time-consuming or ineffective.

(more…)

Posted in Guest Post

Steven Chu is currently the William R. Kenan, Jr. Professor of Physics & Professor of Molecular & Cellular Physiology at Stanford University. You might know him better as the former U.S. Secretary of Energy, the first scientist to hold a Cabinet position.

He was also the director at the Lawrence Berkeley National Laboratory, Professor of Physics and Molecular Cell Biology at UC Berkeley, and head of the Quantum Electronics Research Department at AT&T Bell Laboratories.

His research includes optical nanoparticle probes and imaging methods for applications in biology and biomedicine and new approaches in lithium ion batteries, air filtration, and other nanotechnology applications.

Along with two colleagues, Chu won the 1997 Nobel Prize in Physics “for development of methods to cool and trap atoms with laser light.”

He is also going to give the ECS Lecture at the 232nd ECS Meeting this fall in National Harbor, Maryland.

Listen to the podcast and download this episode and others for free on Apple Podcasts, SoundCloud, Podbean, or our RSS Feed. You can also find us on Stitcher and Acast.

(more…)

Focus IssuesThe Journal of The Electrochemical Society (JES) Focus Issue on Progress in Molten Salts and Ionic Liquids is now closed, with 51 papers available in the ECS Digital Library. All papers are open access.

In the issue’s preface, authors Robert Mantz, Hugh De Long, Luke Haverhals, and Paul Trulove state, “The objective of this focus issue is to expose the broader community to the research going on in the area of molten salts and ionic liquids beyond that which is presented in the symposium that is organized every two years by ECS. Hopefully these examples of research being pursued will result in the possibility of additional collaborations with the community at large.”

For over 40 years, research related to molten salts and ionic liquids has found a home with ECS. Over the course of those years, interest in the area has expanded, leading unique applications in energy, sensors, rare earth and nuclear chemistry, electrodeposition, reactions, and solute and solvent properties.

Read the JES Focus Issue on Progress in Molten Salts and Ionic Liquids to learn more about the fundamental and applied research happening in the field.

PS: Access 14 original Proceedings Volumes in our Molten Salts Collection.