ECS hosts over 20 region-specific sections, offering local scientists and engineers an opportunity to connect with researchers in their area and participate in a variety of events. The ECS Singapore Section is the most recent addition to that list, chartered by the ECS Board of Directors on March 7, 2017. While the section is just getting its legs, the section’s chair believes that it could help bolster a growing field in Southeast Asia.
“There are extensive research activities in electrochemical science in Singapore and Southeast Asia,” says Alex Yan Qingyu, chair of the ECS Singapore Section and professor at Nanyang Technological University. “It is important to have an organization with good leadership to promote extensive interaction and collaboration between the researchers, and increase student and researcher interests and involvement in the electrochemical community.”
Yan hopes that the establishment of the ECS Singapore Section will help connect all interested parties from academia, industry, and government in an effort to bridge a scientific gap and provide networking opportunities that could lead to new developments or help members advance their careers.
“We would like to organize workshops and conferences to promote the students’ and researchers’ activities and encourage them to join the ECS community,” Yan says. “We would also like to create a good platform to connect the local electrochemists to international scientists and industry representatives.”
Future plans for the section include the potential for a small workshop in late 2017 and a summer school to be further conceptualized for 2018.


When people hear about prospecting, they might imagine old forty-niners (miners) with pickaxes hunting for gold, or maybe an agent for the San Francisco 49ers (football team) scouting for new talent. In my lab we do another version, called bio-prospecting – searching for useful substances from natural sources. Bio-prospecting has produced many valuable products, including 
A new issue of ECS Transactions (ECST) has just been published from the XXXI National Congress of the Mexican Society of Electrochemistry/9th Meeting of the ECS Mexican Section.
Scientists studying climate change have long debated exactly how much hotter Earth will become given certain amounts of greenhouse gas emissions. Models predicting this “climate sensitivity” number may be closer to the observed reality than some previously thought, according to a new study.
ECS is proud to partner with the
ECS is pleased to announce the 11 award winners for the Society’s spring biannual meeting.
The discovery of an electric arc can be tied to the use of an electrochemical energy source. Sir Humphry Davy described in 1800 an electric discharge using electrochemical cells1 that produced what we would call a spark, rather than an arc. However, in 1808, using an electrochemical battery containing 2000 plates of copper and zinc, he demonstrated an electric arc 8cm long. Davy is also credited with naming the phenomenon an arc (Fig. 1). An electric arc was also discovered independently in 1802 by Russian physicist Vasily Petrov, who also proposed various possible applications including arc welding. There was a long gap between the discovery of the electric arc and putting it to use.
ECS now has an app for your mobile device. Follow the latest research published in ECS journals, the newest Redcat blog posts, and get instant access to the ECS podcasts and videos all in one place. It also includes the meeting scheduler for the upcoming ECS biannual meeting.
Ajit Khosla is a professor at Yamagata University in Yonezawa, Japan and a visiting professor at San Diego State University’s College of Engineering. Khosla’s work in the area of nano-microsystems has resulted in more than 100 scientific and academic contributions. Khosla has recently been named associate editor for the