Wind powerNew research shows another step forward in the goal of developing energy storage systems robust enough to store such intermittent sources as wind and solar on a large-scale.

Their work explores the opportunities in solid oxide cells (SOCs), which the group believes to be one of the best prospects in energy storage due to their high efficiency and wide range of scales.

ECS member John Irvine and his team from the University of St. Andrews have set out to overcome traditional barriers in this technology, developing a new method of electrochemical switching to simplify the manufacturing of the electrodes needed to deliver high, long-lasting energy activity.

This from the University of St. Andrews:

The results demonstrate a new way to produce highly active and stable nanostructures – by growing electrode nanoarchitectures under operational conditions. This opens exciting new possibilities for activating or reinvigorating fuel cells during operation.

(more…)

Five ECS short courses will be offered at PRiME 2016 in Honolulu this October!

What are short courses? Taught by academic and industry experts in intimate learning settings, short courses offer students and professionals alike the opportunity to greatly expand their knowledge and technical expertise.

PRiME 2016 short courses will be held on Sunday, October 2, 2016 from 9:00 a.m. to 4:30 p.m.

Don’t miss the early-bird deadline of September 2, 2016! Register today!

Short Course #5: Polymer Electrolyte Fuel Cells

Hubert A. Gasteiger and Thomas J. Schmidt, Instructors 

This short course develops the fundamental thermodynamics and electrocatalytic processes critical to polymer electrolyte fuel cells (PEFCs, including Direct Methanol and Alkaline Membrane FCs). In the first part, we will discuss the relevant half-cell reactions, their thermodynamic driving forces, and their mathematical foundations in electrocatalysis theory (e.g., Butler-Volmer equations). Subsequently, this theoretical framework will be applied to catalyst characterization and the evaluation of kinetic parameters like activation energies, exchange current densities, reaction orders, etc.

(more…)

Sponsored by MTI Corporation and the Jiang Family Foundation

2016 continues to be a banner year for the ECS Battery Division. Allow us to introduce the two inaugural winners of the Battery Division Postdoctoral Associate Research Award sponsored by MTI Corporation and the Jiang Family Foundation. The award was created earlier this year to encourage excellence among postdoctoral researchers in battery and fuel cell research.

Yelena Gorlin <br

Dr. Yelena Gorlin
Postdoctoral Research Associate
Technische Universität München

 

 

Liumin Suo

<br

Dr. Liumin Suo
Postdoctoral Research Associate
Massachusetts Institute of Technology

 

 

ECS extends sincere appreciation to Dr. Xiao P. Jiang and the MTI Corporation for this partnership. A solid track record of philanthropy coupled with an empathetic understanding of the challenges associated with the role of the post-doctoral research associate makes this award possible.

Through its Honors and Awards Program, ECS has recognized professional and volunteer achievement within our multi-disciplinary sciences for decades. Learn more about various forms of ECS recognition and those who share the spotlight as past award winners.

Posted in Awards, Programs
Tagged ,
Invisible wood

Image: University of Maryland

Wood has been a key building block for much of history infrastructure. While we may have witnessed wood fade out in lieu of other materials in more recent times, it’s about to make a comeback in an unexpected way.

Past ECS member Liangbing Hu of the University of Maryland, College Park is developing a stronger, transparent wood that can be used in place of less environmentally friendly materials such as plastic.

But this development’s novelty really lies in the transparency factor. So many structures built today rely on the use of glass and steel. By replacing those building materials with the transparent wood, the world of design could be revolutionized while heating costs and fuel consumption rates are simultaneously reduced.

This from CNN:

Hu describes the process of creating clear wood in two steps: First, the lignin — an organic substance found in vascular plants — is chemically removed. This is the same step used in manufacturing pulp for paper. The lignin is responsible for the “yellow-ish” color of wood. The second step is to inject the channels, or veins of the wood by filling it with an epoxy — which can be thought of as strengthening agent, Hu says.

(more…)

The National Park Service, which oversees more than 400 sites across the country, celebrated its 100th birthday on Aug. 25, 2016. During the centennial anniversary, Popular Science caught up with Bill Nye to discuss how climate change is affecting these public lands and their inhabitants.


Bill Nye On Climate Change In Our National Parks by PopSci
Learn more about what our scientists are doing to provide answers to growing global energy needs with clean, alternative solutions.

Education is the Key to SuccessChildren struggle to learn when they don’t have science labs and libraries. Learning becomes difficult in classrooms that are falling apart, or where children are expected to sit on the floor because they have neither desks nor chairs.

A lack of infrastructure is just one contributor to South Africa’s entrenched and ongoing educational inequality. There is another, less frequently discussed issue that is deepening this inequality: access to quality peer-reviewed information.

Such information should be available to all South Africans whether they are school children, university students, researchers or citizen scientists. This will encourage lifelong self-learning. It will spur continued research and innovation. Access to information can bolster education, training, empowerment and human development.

International Open Access Week offers a good opportunity to explore how South Africa can improve its citizens’ access to information.

Opening up access

It has been more than 21 years since apartheid ended, but a distinction remains between South Africa’s “rich” and “poor” universities. One of the reasons for this distinction is the richer institutions’ ability to invest in research resources. They can afford expensive subscriptions to databases which contain a wealth of research – ironically funded by taxpayers’ money.

The historically disadvantaged and predominantly black universities can’t afford such subscriptions. Their academics also can’t contribute to such resources, because authors are expected to pay a fee for the “privilege” of being published.

As university budgets are slashed, even wealthier institutions are beginning to struggle with subscription and publication fee costs.

(more…)

Women in STEMJust over 45 years ago today, 500,000 women marched down New York City’s Fifth Avenue to celebrate the anniversary of the 1920 ratification of the 19th Amendment. Since that day, Aug. 26 has been annually celebrated in the U.S. as Women’s Equality Day – a celebration of a major turning point in the women’s rights movement: the right to vote.

While women’s move toward equality has gained much momentum since the 1920s, there have been plenty of bumps in the road – especially for women in science, technology, engineering, and math.

History may not have always been kind to women, but they’ve always been there – building the early foundation of modern science and breaking gender barriers in innovation and discovery.

Take Nettie Stevens (born 1861), the foremost researcher in sex determination, whose work was initially rejected because of her sex. Or Mary Engle Pennington (born 1872), an American chemist at the turn of the 20th century, pioneering research that allows us to process, store, and ship food safely. Barbara McClintock (born 1902) was deemed crazy when she suggested that genes jump from chromosome to chromosome. Of course, she was later awarded the Nobel Prize in Physiology or Medicine for her discovery of genetic transportation.

Through the years, women in STEM have worked tirelessly to break the hardest glass ceilings and close the gender gap.

(more…)

Solar-to-Hydrogen Production

The device is able to convert solar energy into hydrogen at a rate of 14.2 percent, and has already been run for more than 100 hours straight.
Image: Infini Lab/EPFL

One of the biggest barriers between renewables and widespread grid implementation has been the issue of intermittency. How can we meet a nation’s energy demands with solar when the sun goes down?

In an effort to move past these barriers toward a cleaner energy infrastructure, a new paper published in the Journal of The Electrochemical Society describes an effective, low-cost solution for storing solar energy.

The research team from Ecole Polytechnique Fédérale de Lausanne is looking to covert solar energy into hydrogen through water electrolysis. At its core, the concept revolves around using solar-produced electricity to split water molecules into hydrogen and oxygen, leaving clean hydrogen to be stored as future energy or even as a fuel.

But this idea is not new to the scientific community. However, the research published in JES provides answer to continuous barriers in this field related to stability, scaling, and efficiency.

(more…)

Glass supercapactors

Researchers place a block of glass between a cathode and anode, and then exerted steady pressure on the glass while gradually heating it.
Image: Douglas Benedict of Academic Image

A new study published in the Journal of The Electrochemical Society describing novel finding in how glass transforms under intense electrical and thermal conditions could potentially spur development in glass supercapacitors, which could bolster the performance of batteries now used for electric vehicles and solar energy.

“This technology is relevant to companies seeking the next wave of portable, reliable energy,” says Himanshu Jain, Lehigh University professor and co-author of the study. “A breakthrough in the use of glass for power storage could unleash a torrent of innovation in the transportation and energy sectors, and even support efforts to curb global warming.”

This from Lehigh University:

McLaren’s work in Marburg revealed a two-step process in which a thin sliver of the glass nearest the anode, called a depletion layer, becomes much more resistant to electrical current than the rest of the glass as alkali ions in the glass migrate away. This is followed by a catastrophic change in the layer, known as dielectric breakdown, which dramatically increases its conductivity. McLaren likens the process of dielectric breakdown to a high-speed avalanche, and using spectroscopic analysis with electro-thermal poling as a way to see what is happening in slow motion.

(more…)

Renewable grideThe world’s next energy revolution is looming nearer.

In order to bolster this transformation, the U.S. Department of Energy has been funding 75 projects in the energy technology field, enabling cutting-edge research into energy conversion and storage. This effort is part of the DOE’s goal to “decarbonize” the U.S. energy infrastructure by the middle of the country.

One of the most promising projects funded by the DOE is led by ECS member Michael Aziz, where he and his team from Harvard are addressing challenges in grid energy storage.

Energy storage has become one of the largest barriers in the widespread implementation of renewables. By offering a cost-effective, efficient answer to energy storage, the issues of intermittency in power sources such as wind and solar could be answered.

Aziz and his team are addressing issues in energy storage with the development of a flow battery based on inexpensive organic molecules in a water-based electrolyte. The team is focusing on using quinone molecules, which can be found in such plant sources as rhubarb or even oil waste. The quinone molecules allow energy to be stored in a water-based solution at room temperature.

Aziz recently discussed some of his work in quinon-bromide flow batteries as part of the Journal of The Electrochemical Society Focus Issue on Redox Flow Batteries-Reversible Fuel Cells.

(more…)