As the landscape of energy harvesting evolves, so do the devices that store that energy. According to researchers from Toyohashi University, all-solid-state lithium rechargeable batteries are at the top of the list of promising future energy storage technologies due to their high energy density, safety, and extreme cycle stability.

ECS member Yoji Sakurai and a team from the university’s Department of Electrical and Electronic Information Engineering recently published a paper detailing their development to advance the all-solid-state batteries, which pushes past barriers related to electrochemical performance.

(MORE: Read Sakurai’s previously published paper in ECS Electrochemistry Letters.)

(more…)

Fuel cells have existed (at least in theory) since the early 1800s, but have spent much of their existence as laboratory curiosities. It wasn’t until the mid-1900s that fuel cells finally got their time in the spotlight with the first major application in the Gemini and Apollo space flights.

While fuel cells have moved forward in the competitive field of energy storage, there are still many barriers that researchers are attempting to overcome. Especially today, with society making a conscious effort to move toward more sustainable types of power, much emphasis has been put on solid oxide fuel cells and moving them from the lab to the market.

(MORE: Get additional information on the evolution of fuel cell technology.)

A team of researchers from Washington State University believes they may have taken a crucial step in doing just that.

Moving fuel cells forward

The team recently published a paper detailing what they believe to be a key step in SOFC improvement and eventually implementation in the marketplace. These small improvements could mean big changes.
SOFCs, unlike other types of fuel cells, do not require the use of expensive materials (i.e. platinum) to develop.

“Solid oxide fuel cells are very fuel flexible in contrast to other kinds of fuel cells, like alkaline fuel cells,” Subhash Singhal, Battelle Fellow Emeritus at Pacific Northwest National Laboratory and esteemed fuel cell expert, told ECS in a previous interview. “Solid oxide fuel cells can use a variety of fuel: natural gas, coal gas, and even liquid fuels like diesel and gasoline.”

(more…)

A new breakthrough in the measurement of solar energy flow has emerged from Lund University.

For the first time ever, researchers have successfully demonstrated the accurate measurement of solar energy in and between different parts of a photosynthetic organism. Gaining this basic understanding could potentially open doors to the development of solar energy technologies with much higher efficiency levels.

Researchers have known about the photochemical reactions inside organisms for over 80 years, but have not understood exactly how solar energy is transported to the organism.

“Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion,” says Donatas Zigmantas, co-author of the study. “That is why new knowledge about photosynthesis will become useful for the development of future solar technologies.”

(more…)

ECS_268Are you a student with plans to attend PRiME 2016 in Honolulu, Hawaii this October? Help ECS help you! Apply to work six hours at the meeting as a student volunteer and receive a FREE PRiME 2016 meeting registration!*

In addition to the free meeting registration, selected volunteers will receive an exclusive behind-the-scenes experience, countless networking opportunities, a PRiME shirt, and a certificate of participation!

As a student volunteer, you will work closely with the PRiME staff and gain first-hand experience in what it takes to execute a PRiME meeting. Take advantage of the opportunity to network and engage with meeting attendees, symposium organizers, and PRiME staff while learning how registration operates, technical sessions run, and how major meeting programs are facilitated.

Ready to apply? Click here to fill out your application today!

(more…)

From Bourbon to Batteries

There is no short supply of bourbon in Kentucky. But like many products, the distillation of the state’s unofficial beverage produces a sludgy waste known as bourbon stillage. The question for one researcher from the University of Kentucky’s Center for Applied Energy Research was how to repurpose that waste into something with tremendous potential.

To answer that question, ECS member Stephen Lipka and his Electrochemical Power Sources group set out to transform the bourbon stillage through a process called hydrothermal carbonization, where the liquid waste gets a dose of water and heat to produce green materials.

(MORE: See more of Lipka’s work in the ECS Digital Library.)

“In Kentucky, we have this stillage that contains a lot of sugars and carbohydrates so we tried it and it works beautifully,” says Lipka. “We take these [green materials] and we then do additional post-processing to convert it into useful materials that can be used for batteries.”

(more…)

toyota-collage

From left to right: Elizabeth Biddinger, City College of New York; Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; Joshua Snyder, Drexel University

The ECS Toyota Young Investigator Fellowship Selection Committee has selected three recipients who will receive a minimum of $50,000 each for fellowships for projects in green energy technology. The winners are Professor Elizabeth Biddinger, City College of New York; Professor Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; and Professor Joshua Snyder, Drexel University.

The ECS Toyota Young Investigator Fellowship, a partnership between The Electrochemical Society and Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is in its second year. A diverse applicant pool of more than 100 young professors and scholars pursuing innovative electrochemical research in green energy technology responded to ECS’s request for proposals.

“Scientists and engineers seek to unveil what is possible and to exploit that knowledge to provide solutions to the myriad of problems facing our world,” says ECS Executive Director Roque Calvo. “We are proud to have the continued support of Toyota in this never ending endeavor to uncover new frontiers and face new challenges.”

The ECS Toyota Young Investigator Fellowship aims to encourage young professors and scholars to pursue research in green energy technology that may promote the development of next-generation vehicles capable of utilizing alternative fuels.

Global development of industry and technology in the 20th century increased production of vehicles and the growing population have resulted in massive consumption of fossil fuels. Today, the automotive industry faces three challenges regarding environmental and energy issues:

(1) Finding a viable alternative energy source as a replacement for oil
(2) Reducing CO2 emissions
(3) Preventing air pollution

(more…)

The Changes are ComingNow that more and more publishers are requiring ORCID iDs, and with the advent of ORCID’s Collect & Connect program, ORCID has been receiving an onslaught of questions about how to properly display ORCID iDs.

When ORCID first released its guidelines on collection and display in 2013, the publishing environment was very different and ORCID was still very young. The constantly changing publishing landscape coupled with the widespread uptake of ORCID iDs has created a need to reevaluate these practices and address any gaps or frequently asked questions.

In order to accomplish this, ORCID has gathered a group of publishing professionals to look at the document and create recommendations for a new set of guidelines. To be successful, these professionals must use their publishing experience, coupled with suggestions from the community. (more…)

Image: NASA

Image: NASA

New satellite images of the algae blooms taking over waterways in Florida have recently been released, showing a 500 percent increase in the amount of water the algae has affected in just two short months.

According to the Florida Oceanographic Society, the blooms in and near Lake Okeechobee in Southern Florida have grown from 22 square miles in early May to a current estimate of 239 square miles.

The growing algae blooms, which have resulted in a state emergency for four Floridian counties, are primarily caused by fertilizer runoff from the surrounding farming communities, adding a buildup of Nitrogen and Phosphorous. With this, algae grows and reduces the oxygen levels in the water, which kills aquatic life and can be poisonous to humans.

Earlier this year, we talked to past ECS President Daniel Scherson about the often unrecognized issues related to algae blooms.

(more…)

Tired of slow internet connections and download speeds? Well, you may be in luck. According to an article from Popular Science, some researchers are looking toward LED technology to replace Wi-Fi.

Wi-Fi is essentially a series of waves traveling along a narrow, electromagnetic spectrum. The more users, the more crowded and congested the spectrum gets, and the more crowded, the slower connection speeds become. The problem, however, is that researchers cannot create more spectrum to allow the waves to pass faster.

Because of this, some are looking to another solution: LEDs.

(more…)

A new collaborative study from Delft University and École Polytechnique Fédérale de Lausanne (EPFL) shows a highly-efficient, simple way to produce hydrogen through solar water-splitting at a low cost.

The team of researchers, including 2016 PRiME Plenary speaker Michael Graetzel, state that by using Earth-abundant catalysts and solar cells, effective water-splitting systems could sustainably produce affordable hydrogen.

Graetzel, known for his low-cost, high-efficiency solar cell that won him the 2010 Millennium Technology Grand Prize, helped lead the effort by separating the positive and negative electrodes using a bipolar membrane, leading to a simple yet effective new method.

Hydrogen economy

The technology behind water-splitting is essential in an economy shifting toward more hydrogen use as alternative fuels. While efficient methods of generating hydrogen do currently exist, the techniques used to produce the gas consume large amounts of fossil fuels.

Moving toward a hydrogen economy could help alleviate the effects of climate change, but only if the means used to produce the gas are also sustainable. This is where water-splitting comes in.

(more…)