A new collaborative study from Delft University and École Polytechnique Fédérale de Lausanne (EPFL) shows a highly-efficient, simple way to produce hydrogen through solar water-splitting at a low cost.

The team of researchers, including 2016 PRiME Plenary speaker Michael Graetzel, state that by using Earth-abundant catalysts and solar cells, effective water-splitting systems could sustainably produce affordable hydrogen.

Graetzel, known for his low-cost, high-efficiency solar cell that won him the 2010 Millennium Technology Grand Prize, helped lead the effort by separating the positive and negative electrodes using a bipolar membrane, leading to a simple yet effective new method.

Hydrogen economy

The technology behind water-splitting is essential in an economy shifting toward more hydrogen use as alternative fuels. While efficient methods of generating hydrogen do currently exist, the techniques used to produce the gas consume large amounts of fossil fuels.

Moving toward a hydrogen economy could help alleviate the effects of climate change, but only if the means used to produce the gas are also sustainable. This is where water-splitting comes in.

(more…)

A new report by TechXplore examines a recently published review paper on the potential in nanomaterials for rechargeable lithium batteries. In the paper, lead-author and ECS member Yi Cui of Stanford University, explores the barriers that still exist in lithium rechargeables and how nanomaterials may be able to lend themselves to the development of high-capacity batteries.

When trying to design affordable batteries with high-energy densities, researchers have encountered many issues, including electrode degradation and solid-electrolyte interphase. According to the paper’s authors, possible solutions for many of these hurdles lie in nanomaterials.

Cui’s comprehensive overview of rechargeable lithium batteries and the potential of nanaomaterials in these applications came from 100 highly-reputable publications, including the following ECS published papers:

(more…)

JSS Editors’ Choice article discusses AlGaN/GaN HEMTs

When it comes to putting technology in space, size and mass are prime considerations. High-power gallium nitride-based high electron mobility transistors (HEMTs) are appealing in this regard because they have the potential to replace bulkier, less efficient transistors, and are also more tolerant of the harsh radiation environment of space. Compared to similar aluminum gallium arsenide/gallium arsenide HEMTs, the gallium nitride-based HEMTs are ten times more tolerant of radiation-induced displacement damage.

Until recently, scientists could only guess why this phenomena occurred: Was the gallium nitride material system itself so inherently disordered that adding more defects had scant effect? Or did the strong binding of gallium and nitrogen atoms to their lattice sites render the atoms more difficult to displace?

The answer, according to scientists at the Naval Research Laboratory, is none of the above.

Examining radiation response

In a recent open access article published in the ECS Journal of Solid State Science and Technology entitled, “On the Radiation Tolerance of AlGaN/GaN HEMTs,” the team of researchers from NRL state that by studying the effect of proton irradiation on gallium nitride-based HEMTs with a wide range of initial threading dislocation defectiveness, they found that the pre-irradiation material quality had no effect on radiation response.

Additionally, the team discovered that the order-of-magnitude difference in radiation tolerance between gallium arsenide- and gallium nitride-based HEMTs is much too large to be explained by differences in binding energy. Instead, they noticed that radiation-induced disorder causes the carrier mobility to decrease and the scattering rate to increase as expected, but the carrier concentration remains significantly less affected than it should be.

(more…)

ECS Honors & Awards Program

Call for Nomination – Summer and Fall 2016

ECS distinguishes outstanding technical achievements in electrochemical and solid state science and technology, and recognizes exceptional service to the Society through the Honors & Awards Program.

We’re now accepting nominations for the following Society, Division, Section, and Student awards:

(more…)

Posted in Awards, Programs

A recently published article in Science discusses findings from a study done on the Thomson Reuters Journal Impact Factor (JIF).

The study concluded that “the [JIF] citation distributions are so skewed that up to 75% of the articles in any given journal had lower citation counts than the journal’s average number.”

The impact factor, which has been used as a measurement tool by authors and institutions to help decided everything from tenure to allocation of grant dollars, has come under much criticism in the past few years. One problem associate with impact factors, as discussed in the Science article, is how the number is calculated and can be misrepresented.

Essentially, the impact factor of a journal is the average number of times the journal’s article is cited over the past two years. However, this number becomes skewed when a very small handful of papers get huge citation numbers, while the majority of papers published get low or no citations. The study argues that because of this, the impact factor is not necessarily a reliable predictive measure of citations.

The second problem discussed in the study is the lack of transparency associated with the calculation methods deployed by Thomson Reuters.

But, no matter what happens with the JIF, as David Smith, academic publishing expert, says in the article, the true problem isn’t with the JIF, it’s “the way we thing about scholarly progress that needs work. Efforts and activity in open science can lead the way in the work.”

Learn more about ECS’s commitment to open access and the Society’s Free the Science initiative: a business-model changing initiative that will make our research freely available to all readers, while remaining free for authors to publish.

UPDATE: Thomson Reuters announced on July 11 in a press release that the company will sell its Intellectual Property & Science business to Onex and Baring Asia for $3.55 billion. Learn more about this development.

By now you’ve probably heard the headlines about the dangers of self-driving cars in light of the first fatal crash involving a Tesla vehicle.

That crash took place on July 1, but more incidents involving the autopilot feature of Tesla vehicles have been reported since.

Just one day after the National Highway Traffic Safety Administration started their investigation into the safety of Tesla’s self-driving mode, another non-fatal accident was reported outside of Pittsburgh.

In a recent interview with NPR, Wired magazine report Alex Davies discussed how Tesla’s autopilot feature works and what some of its safety issues are.

According to Davies, Tesla’s autopilot feature functions similarly to the advanced cruise control of other makes and models. Once you exceed 18 mph, drivers can activate the autopilot mode, where the car then uses cameras to read lane lines and sensors to keep appropriate distances from other vehicles.

But the technology does not seem to be working without complication.

(more…)

RS2EThe French research network on electrochemical energy storage (RS2E) – a public research organization focused on batteries and supercapacitors – has just launched the Young Energy Storage Scientist Award 2016.

The YESS Award is geared toward young scientists in the energy storage field, focused on awarding research funds to innovative and significant projects in the field of electrochemical energy storage, coupled fields of electrochemical energy storage and conversion, or associated characterization techniques.

With this award, RS2E aims to encourage the next wave of energy storage researchers to be as innovative as possible and to say in private/publish energy storage research. The award aims to aid scientists 35 years old or younger from the U.S., Europe, and Canada.

Two $11,000 awards will be distributed, as well as five $2,700 awards.

Deadline for project submissions is July 27, 2016.

Learn more.

Nettie StevensPrior to the turn of the 20th century, society pondered a question that baffled people for millennia: What drives the sex of a baby? What makes a boy a boy? What makes a girl a girl?

Pioneering female geneticist Nettie Stevens set out to tackle that mystery in 1905, when she discovered the sex is determined by chromosomes. Pretty revolutionary stuff for a society that assumed that mother, environment, or diet determined if a child was born male or female.

Today would be her 155th birthday, which Google is honoring with their daily doodle.

Interestingly enough, when Stevens presented her initial work on chromosomes’ role in sex determination, it was pretty widely denied by the scientific community. However, when Edmund Wilson (who also believed environmental factors also played some role in determining sex) released research that same year that came to the same relative conclusion as Stevens’, the connection between chromosomes and sex determination became more widely accepted.

Essentially, the foremost researcher in sex determination’s work was initially rejected largely because of her sex. While Stevens’ work eventually stood on its own merit and gave us the ultimate understanding for sex determination, her story speaks to the struggles that women in STEM faced, and often still face today.

(READ: “Celebrating Women in STEM“)

When Stevens died in 1912 from breast cancer, the New York Times wrote, “She was one of the very few women really eminent in science, and it took a foremost rank among the biologists of the day.”

Modified Cathode

Cathode particles treated with the carbon dioxide-based mixture show oxygen vacancies on the surface.
Image: Laboratory for Energy Storage and Conversion, UC San Diego

An international team of researchers has recently demonstrated a 30 to 40 percent increase in the energy storage capabilities of cathode materials.

The team, led by ECS member and 2016 Charles W. Tobias Young Investigator Award winner, Shirley Meng, has successfully treated lithium-rich cathode particles with a carbon dioxide-based gas mixture. This process introduced oxygen vacancies on the surface of the material, allowing for a huge boost to the amount of energy stored per unit mass and proving that oxygen plays a significant role in battery performance.

This greater understanding and improvement in the science behind the battery materials could accelerate developments in battery performance, specifically in applications such as electric vehicles.

(READ: “Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries“)

“We’ve uncovered a new mechanism at play in this class of lithium-rich cathode materials,” says Meng, past guest editor of JES Focus Issue on Intercalation Compounds for Rechargeable Batteries. “With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity.”

(more…)

Carbon Dioxide

Image: CC0

With atmospheric greenhouse gas levels at their highest in history, many researchers have been contemplating one question: How can we reutilize carbon dioxide?

One new study reports a new catalyst with the ability to execute highly selective conversion of carbon dioxide into ethylene, producing an important source material for the chemical industry.

The push to convert carbon dioxide into useful chemicals is not a completely novel concept among the scientific community. For this study, researchers opted to make the process more efficient by implementing a new catalyst with higher selectivity to produce more useful chemicals and less unwanted byproducts.

Ruhr-Universitӓt Bochum PhD student and ECS student member, Hemma Mistry, veered away from the traditional catalyst used in this process and instead opted for copper films treated with oxygen or hydrogen plasmas. By doing this, Mistry was able to alter surface properties for optimal performance.

(MORE: Read Mistry’s past ECS Meeting Abstract entitled, “Selectivity Control in the Electroreduction of CO2 over Nanostructured Catalysts.”)

(more…)