JESDeadline: June 15, 2016

ECS  is seeking to fill the position of Technical Editor of the Physical and Analytical Electrochemistry, Electrocatalysis, and Photoelectrochemistry Topical Interest Area for the Journal of The Electrochemical Society.

The Physical and Analytical Electrochemistry, Electrocatalysis, and Photoelectrochemistry (PAEEP) Topical Interest Area (TIA) includes fundamental aspects of interfacial science and electroanalytical chemistry. Specific topics include double layer theory and experiments, theoretical and experimental aspects of electrocatalysis, in situ spectroscopy, photoelectrochemical cells, scanning probe microscopy, and X-ray and electron microscopy methods.

The Journal of The Electrochemical Society (JES) has been in existence since 1902. Along with the ECS Journal of Solid State Science and Technology (JSS), JES and JSS provide unparalleled opportunities to disseminate basic research and technology results in electrochemical and solid state science and technology. JES and JSS each publish a minimum of 12 regular and focus issues each year. All ECS journals offer Author Choice Open Access.

ECS maintains 13 TIAs, and there is one Technical Editor for each TIA, supported by Associate Editors and an Editorial Advisory Board. Technical Editors for the ECS journals ensure the publication of original, significant, well-documented, peer-reviewed articles that meet the objectives of the relevant journal, and are within the scope of the Society’s TIAs.

Read the full description of the position and contact ECS Deputy Executive Director & Publisher Mary Yess if you would like to be considered or recommend someone for the position.

ECSTSeven new issues of ECS Transactions have just been published for the 229th ECS Meeting.

The papers in these issues of ECST will presented in San Diego May 29 to June 3, 2016. ECST Volume 72, Issued 1 to 7 can be found here.

New for 2016: these issues of ECST can also be purchased in the NEW ECS ONLINE STORE as full-text digital downloads. Please search for ECST issues from the 229th ECS meeting in the ECS online store here.

digital_library_hiresPlease let your librarians know that our subscription prices for 2017 are up on our website.

As part of our commitment to Free the Science…

  • The Digital Library has not increased in price since 2013!
  • ECS members continue to be eligible for one OA Article Credit per year.

If you would like your institution to subscribe to ECS Plus (which allows authors affiliated with a subscribing institution unlimited article credits for publishing OA), please let your librarian know that you would value it.

Nobel laureate and climate advocate Al Gore is optimistic about climate change in his new TED Talk. In his talk, Gore proposes three questions — the answers of which help make the case for optimism on climate change.

We may understand melanin best as the pigment that dictates our skin tone, but these pigments are actually super plentiful – existing in almost every organism on earth. While melanin is all around us, there is still much to learn about its chemical structure.

A group of researchers from Carnegie Mellon University set out to better understand melanin, and in doing so, found that its chemical structure may be conducive to creating certain kinds of batteries.

“Functionally, different types of melanin molecules have quite different chemistries, so putting them together is a little like solving a jigsaw puzzle, with each molecule a puzzle piece,” says Venkat Viswanathan, ECS member and co-author of the study. “You could take any number of these pieces and mix and match them, even stack them on top of each other. So what we researched was, which of these arrangements is really correct?”

(more…)

Carbon nanotubes have a potentially wide variety of applications due to their strength, flexibility, and other promising properties. While many researchers have been focused on applying carbon nanotubes in nanotechnology and electronics, ECS members Kris Dahl and Mohammad Islam are looking to give the nanotubes a new use in medical applications.

Dahl, a chemical and biomedical engineer; and Islam, a materials scientists; are taking their respective skills and putting them to use in the novel interdisciplinary development, making possible carbon nanotubed-based structures for drug delivery.

This from Carnegie Mellon University:

Picture feeding a dog a pill. In order to do so, one would wrap it in cheese to mask the medicine and make it more appealing. In a similar vein, to enhance drug delivery, Dahl and Islam have engineered proteins that wrap around the drug-coated carbon nanotubes. The cells, which love these proteins, more readily take up the drug—much as a dog would more readily eat the cheese-coated pill.

(more…)

We’re delving into our archives as part of our continuing Masters Series podcasts. In 1995, ECS and the Chemical Heritage Foundation worked to compile various oral histories of some of the biggest names in electrochemical and solid state science.

One of those key figures was Norman Hackerman, a giant among giants. Hackerman was a world renowned scientist, an outstanding educator, a highly successful administrator, and a champion for basic research. Hear his voice once again as he tells colorful stories of the science, his life, and everything in between.

Listen and download these episodes and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

As far back as 1839, the English scientist William Grove had the idea that the reactants of a battery could be gases fed into it from external tanks. For most of their history, fuel cells existed only as laboratory curiosities. But fuel cells have gained much more attention in recent years, with many considering these power sources for applications in vehicles and alternative grid technology.

New research from Harvard University shows just how promising fuel cell technology could be. According to the study, the researchers were able to develop more efficient fuel cells that get more robust as they age instead of degrading.

“The elegance of this process is that it happens naturally when exposed to the electrons in fuel,” says Shriram Ramananthan, lead author of the study and past ECS member. “This technique can be applied to other electrochemical devices to make it more robust. It’s like chess—before we could only play with pawns and bishops, tools that could move in limited directions. Now, we’re playing with the queen.”

batteries-1379208_640In late 2015, a team of Cambridge University researchers led by ECS member Clare Grey, detailed research in the journal Science on the path to the “ultimate” battery. According to the study, the researchers stated they had successfully demonstrated how to overcome many of the problems preventing the theoretically promising lithium-air battery from being commercially viable.

The key component to this research relies on a highly porous, “fluffy” carbon electrode made from graphene. The researchers cautioned that although the preliminary results were very promising, much work was yet to be done to take lithium-air batteries from the lab to the marketplace.

However, the research got many scientists in energy science and technology talking. Like all groundbreaking results, there has been much discussion and some controversy over the research published by Grey and her team.

(more…)

Two ECS members from Drexel University have recently been awarded for their exemplary work in the sciences.

Yury Gogotsi 2016Yuri Gogosti, Fellow of ECS and advisor of the Drexel ECS Student Chapter, has been awarded the 2016 Nano Energy Award. The award, presented by the journal Nano Energy, recognizes outstanding research in the field of nano energy, whose work reflects the interdisciplinary nature of the field and helps solves major energy problems facing society.

Gogostsi’s work is highly regarded in the scientific community. Among his most notable accomplishments, Gogotsi was a member of a team that discovered a novel family of two-dimensional carbides and nitrides, which have helped open the door for exceptional energy storage devices. Additionally, Gogotsi’s hand in discovering and describing new forms of carbon and the development of a “green” supercapacitor built of environmentally friendly materials has advanced the field of energy technology.

ekaterinapomerantsevajpgEkaterina Pomerantseva, ECS member and advisor of the Drexel ECS Student Chapter, has been awarded a three-year $360,000 National Science Foundation Division of Materials Research grant for her project, “Advanced Electrochemistry of Na-ion Battery Cathodes Through Chemically Controlled Materials Synthesis.”

Her work looks to address some of the current barriers prevention Na-ion batteries from competing with their Li-ion cousins. Pomerantseva believes that the grant money could help develop sustainable energy storage that is cheaper, reliable, and environmentally friendly – opening the door to next generation energy storage systems and new possibilities for grid storage.