Submit Your Abstract for PRiME 2016!

Prepping for PRiME

Our meetings team was just in Hawaii prepping for PRiME!
See more here.

Now is the time to make your plans for October; submit an abstract today and join us at PRiME, from October 2-7, 2016 in Honolulu, HI at the Hawaii Convention Center and the Hilton Hawaiian Village!

Submit your abstract today!

As the Joint International Meeting of The Electrochemical Society, The Electrochemical Society of Japan, and The Korean Electrochemical Society, PRiME 2016 will be one of the largest meetings on electrochemical and solid-state science, featuring over 50 symposia in the following areas:

  • Batteries and Energy Storage
  • Carbon Nanostructures and Devices
  • Corrosion Science and Technology
  • Dielectric Science and Materials
  • Electrochemical/Electroless Deposition
  • Electrochemical Engineering
  • Electronic Materials and Processing
  • Electronic and Photonic Devices and Systems
  • Fuel Cells, Electrolyzers, and Energy Conversion
  • Luminescence and Display Materials, Devices, and Processing
  • Organic and Bioelectrochemistry
  • Physical and Analytical Electrochemistry, Electrocatalysis, and Photoelectrochemistry
  • Sensors
  • General Topics

Some of these symposia will honor the work of Zempachi Ogumi, Masahiro Seo, Milan Paunovic, Mordechay Schlesinger, and Bernard Tribollet, while others are long running standards in the areas of PEFC, Li-ion batteries, molten salts, photovoltaics, SiGe, MEMS/NEMS, magnetic materials, thin film transistors, atomic layer deposition, and semiconductors.

With all of these technical talks taking place in gorgeous Honolulu, Hawaii, you might never want to go home; check out the Call for Papers and see what symposia you will be presenting in!

Submit abstract!

PRiME 2016 abstract deadline: April 15, 2016.

See you in Hawaii!

Posted in Meetings
New Semiconductor Material for Faster Electronics

The newly developed semiconductor material could eventually lead to electronic devices that are 100 percent faster.
Image: Dan Hixson/University of Utah College of Engineering

Thanks to a new development in semiconducting materials, our electronics may soon be faster all while consuming a lot less power.

The semiconductor is comprised of tin and oxygen and is only one atom thick, which allows electrical charges to move very quickly – much faster than comparable materials, such as silicon. This material also differs from conventional 3D materials, as it is 2D. The benefit of this material being 2D lies in the reduction of layers and thickness, thus allowing electronics to move faster.

This material has the ability to be applied to transistors, which are central to the majority of electronic devices.

This from the University of Utah:

While researchers in this field have recently discovered new types of 2D material such as graphene, molybdenun disulfide and borophene, they have been materials that only allow the movement of N-type, or negative, electrons. In order to create an electronic device, however, you need semiconductor material that allows the movement of both negative electrons and positive charges known as “holes.” The tin monoxide material discovered by Tiwari and his team is the first stable P-type 2D semiconductor material ever in existence.

(more…)

Microchip Energy

ECS members have found a way to embed a supercapacitor energy storage device in a silicon wafer of a microchip.
Image: Drexel University.

More than half a decade of research has revealed that carbon films can give microchips energy storage capabilities.

An international team, led by ECS members Yury Gogotsi and Patrice Simon, has confirmed their process for making carbon films and micro-supercapacitors that will allow microchips and their power sources to become one and the same.

(MORE: Read additional publications by Gogotsi.)

“This has taken us quite some time, but we set a lofty goal of not just making an energy storage device as small as a microchip—but actually making an energy storage device that is part of the microchip and to do it in a way that is easily integrated into current silicon chip manufacturing processes,” Simon said. “With this achievement, the future is now wide open for chip and personal electronics manufacturers.”

(MORE: Read additional publications by Simon.)

This research proves that the versatile films can be seamlessly integrated into systems that power silicon-based microchips, providing the ability to power items from laptops to smart watches.

“The place where most people will eventually notice the impact of this development is in the size of their personal electronic devices, their smart phones, fitbits89 and watches,” Gogotsi said. “Even more importantly, on-chip energy storage is needed to create the Internet of Things – the network of all kinds of physical objects ranging from vehicles and buildings to our clothes embedded with electronics, sensors, and network connectivity, which enables these objects to collect and exchange data. This work is an important step toward that future.”

This from Drexel University:

The researchers’ method for depositing carbon onto a silicon wafer is consistent with microchip fabrication procedures currently in use, thus easing the challenges of integration of energy storage devices into electronic device architecture. As part of the research, the group showed how it could deposit the carbon films on silicon wafers in a variety of shapes and configurations to create dozens of supercapacitors on a single silicon wafer.

Read the full article.

The carbon films also have the potential to have applications in dynamic seals, gas filtration, and water desalination or purification.

Lock in Your Location at IMLB

imlb-cover-resizedLithium batteries are everywhere!

IMLB 2016 will be the premier international conference on the state of lithium battery science and technology. Convening from June 19-24 in the heart of downtown Chicago, the conference is expected to draw 2,000 experts, researchers, and company representatives involved in the lithium battery field. This meeting is one of the leading resources for industry experts from around the world and attendees represent an extremely well-targeted and responsive audience.

Join industry leaders like, Samsung, Toyota and more as an exhibitor at the 2016 IMLB. As an exhibitor, you will have the unique opportunity to present your products and services to key constituents from industry, government and academia.

Exhibit space is filling up quickly!

As always, exhibit booths and sponsorship options will be allotted on a first come, first served basis. As the exhibit lineup continues to grow we highly recommend you lock in your exhibit location and sponsorship options today. To reserve a booth, or browse our sponsorship options, please complete pages 7-8 of our online exhibit and sponsorship brochure and return them by no later than Friday, March 11.

If you have any questions, or would like to work on a custom package, please feel free to contact Casey Emilius, ECS Meetings Coordinator.

Posted in Meetings

Battery Division Awards

Nominations Deadline: March 15, 2016

Battery IconECS recognizes outstanding technical achievements in electrochemistry and solid-state science and technology through its Honors & Awards program. There are many deserving members of the Battery Division among us and this is an opportunity to highlight their contributions.

We are currently accepting nominations for:

Battery Division Research Award: established in 1958 to encourage excellence in battery and fuel cell research, and to encourage publication in ECS journals.

Battery Division Technology Award: established in 1993 to encourage the development of battery and fuel cell technology, and to recognize significant achievements in this area.

Battery Division Student Research Award: established in 1979 to recognize promising young engineers and scientists in the field of electrochemical power sources.

Please review the full award criteria for distinct application requirements before making the nomination.

Take a look at the 2015 winners of Battery Division Awards:

  • Dr. Martin Winter – Research
  • Dr. Ashok Shukla – Technology
  • Matteo Bianchini – Student Research

Nominate a colleague today!

Happy Valentine’s Day

 

2016-valentine-card-text-06

We all know electrochemistry and solid state scientists are solving some of the biggest challenges today, but did you know their innovations are also improving traditional Valentine’s Day gifts around the world?

Share your love for science. Donate to ECS today!

Happy Birthday, Thomas Edison!

Today, Feb. 11, 2016, marks the 165th birthday of one Thomas Edison.

While he may no longer be around for us to celebrate with, ECS is paying homage to one of our earliest members.

“Genius is one percent inspiration, 99 percent perspiration.”

– Thomas Edison, Harper’s Monthly (September 1932 edition)

Sensor Division Awards

Sensor DivisionECS recognizes outstanding technical achievements in electrochemistry and solid-state science and technology through its Honors & Awards program. There are many deserving members of the Sensor Division among us and this is an opportunity to highlight their contributions.

We are currently accepting nominations for the Sensor Division Outstanding Achievement Award which was established in 1989 to recognize outstanding achievement in research and/or technical contributions to the field of sensors and to encourage work excellence in the field. The award consists of a scroll, and a $1,000 prize. The recipient is required to attend the Society meeting at which the award is given and present a lecture on topics for which the award is made and may receive (if required) some financial assistance to facilitate attendance.

Nomination Deadline: March 1, 2016

Please review the full award criteria before completing the application.

We encourage you to submit a nomination and acknowledge the hard work of your peers!

Clean Energy from Water

For most of history, fuel cells existed only as laboratory curiosities. As far back as 1839, the English scientist William Grove had the idea that the reactants of a battery could be gases fed into it from external tanks.

Since their humble beginnings, fuel cells have come a far to prove as a viable alternative to combustion. Currently, researchers at the University of Basel are studying how sunlight could split water into hydrogen and oxygen, creating a fuel cell that could produce clean energy from water.

(MORE: Read “Battery and Fuel Cell Technology.”)

Artificial photosynthesis has proven to be one of the most promising tools in producing clean, renewable resources. This process occurs when water is photo-electrochemically, with the aid of sunlight, separated into its H2 and O2 components.

Of the two reactions that occur, water oxidation typically provides researchers with the most hurdles to overcome. The new research works to develop an efficient, sustainable water oxidation catalyst.

(more…)

Sensor-1

Metasensor’s Sensor-1 is a personal security system for your portable goods.

Home security systems are great for protecting valuables inside your home and stopping attempted burglaries, but those systems aren’t very practical when you travel with your precious, portable property.

Metasensor has developed its new Sensor-1, which acts as a portable security system – changing the way we protect our belongings and track objects in general.

This from Popular Science:

Sensor-1 is a small, octagonal disk that contains an accelerometer, a gyroscopic stabilizer, and a magnetometer, which work together to track the orientation of the device it’s attached to in three dimensions. They alert Sensor-1 if the object has been moved, and how. It also has three LED lights, a small siren, and Bluetooth connectivity.

(more…)

Tagged