The ECS Outstanding Student Chapter Award was established in 2012 to recognize distinguished student chapters that demonstrate active participation in The Electrochemical Society’s technical activities, establish community and outreach activities in the areas of electrochemical and solid state science and engineering education, and create and maintain a robust membership base.

Click here for complete rules and nomination requirements. Nominations are being accepted for the 2016 award, which will be presented at the PRiME 2016 in Honolulu, HI, October 2-7, 2016.

For questions or additional information, please contact awards@electrochem.org. Submission deadline extended through April 15, 2016.

Apply today!

The 2015 Outstanding Student Chapter Award Recipient student-blog

The 2015 ECS Outstanding Student Chapter Award recipient was Indiana University. Founded in 2015, Indiana University brings together members from a variety of research backgrounds such as mechanistic organic, environmental, bioanalytical, and materials, to promote interdisciplinary discussions about electrochemistry and solid state science. Led by faculty advisors Professor Dennis Peters and Professor Lane Baker, this group has hosted guest speakers, including Allen J. Bard and Nate Lewis, on their campus to not only present seminars, but also give career advice. The mission of the Indiana Student Chapter is to spread knowledge of electrochemical science to the younger members of their community.

Canada Section: 2016 Spring Meeting

Join the ECS Canada Section for their 2016 Spring Meeting! The meeting will be held at Saint Mary’s University in Halifax, Nova Scotia on Friday, June 10, 2016 and will feature four illustrious speakers, including keynote speaker Dr. Mark Orazem. The event runs from 8 a.m. to 8 p.m.

This meeting is dedicated to the memory of the late Prof. Sharon Roscoe, a long-time member of the ECS and a preeminent Nova Scotian electrochemist.

Dr. Mark Orazem (Keynote)

Speakers

Dr. Mark Orazem (Keynote) | Department of Chemical Engineering, University of Florida, USA

Dr. Jacek Lipkowski | Department of Chemistry, University of Guelph, ON, Canada

Dr. Aicheng Chen | Department of Chemistry, Lakehead University, ON, Canada

Dr. David Shoesmith | Department of Chemistry, Western University, ON, Canada

Registration

Registration fees:
Regular attendees: CAD 150
Students and postdoctoral fellows: CAD 50
(to be paid on-site by cash or cheque)

If you wish to present your research, please submit your presentation title and abstract as part of the registration process. Students and PDFs are invited to participate in the poster competition.

The registration deadline is Friday, May 6, 2016.

Register now!

smu-shot

 

 

Experience the wonders of Argonne National Laboratory at this year’s Chicago Section Spring Event! Featuring a laboratory tour, a dinner buffet, and a talk by distinguished speaker Dr. Deyang Qu, this event is not to be missed!

ANL_PMS_P_H

This event will take place on Tuesday, April 5th and begin at 3:30 p.m. Register now!

Argonne National Laboratory

Spanning 1,500 acres, Argonne National Laboratory is the largest national laboratory in the Midwest. Argonne serves as a center for government and corporate research and development, as well as academic collaborations, in the greater Chicago region.

Location

Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439
Directions

Schedule of eventsargonne

3:30 p.m. | Arrival to obtain a visitor pass for Optional Tour | Argonne Information Center

3:40 p.m. | Arrival at Guest House to depart for Optional Tour

3:45-5 p.m. | Depart for Transportation Center & Advanced Photon Source Tour (from Guest House)

5:15-6 p.m. | Dinner Registration & Reception | Guest House

6:00-7 p.m. | Dinner
Buffet choices of: mixed green salad, baked tilapia, grilled herb chicken breast, roasted herb potatoes, green beans and baby carrots, and assorted mini pastries

Prices:
Students and Retired Members: $10
Student Nonmembers: $15
Members: $35
Nonmembers: $45

(more…)

ECS will be offering five short courses at the 229th ECS Meeting this year in San Diego.

What are short courses? Taught by academic and industry experts in intimate learning settings, short courses offer students and professionals alike the opportunity to greatly expand their knowledge and technical expertise. 

Short Course #2: Fundamentals of Electrochemistry: Basic Theory and Thermodynamic Methods

Jamie Noël, Instructor

This course covers the basic theory and application of electrochemical science. It is targeted toward people with a physical sciences or engineering background who have not been trained as electrochemists, but who want to add electrochemical methods to their repertoire of research approaches. There are many fields in which researchers originally approach their work from another discipline but then discover that it would be advantageous to understand and use some electrochemical methods to complement the work that they are doing. The course begins with a general, basic foundation of electrochemistry and uses it to develop the theory and experimental approaches to electrochemical problems of a thermodynamic nature. It complements a sister course, “Fundamentals of Electrochemistry: Basic Theory and Kinetic Methods”, offered alternately by the same instructor. The two courses have different emphasis, and each is designed to be a stand-alone introduction to electrochemical fundamentals. If both courses are desired, they can be taken in either order.

(more…)

Happy Pi Day!

Here at ECS, we love at things science, technology, engineering, and math. With that said, it’s only fitting that we pay a little homage to everyone’s favorite mathematical constant on its name day.

Pi is an irrational and transcendental number, continuing infinitely without repetition or pattern. It’s been calculated our as far as over one trillion digits beyond its decimal point, with Japanese memory master Akira Haraguchi having recited the first 100,000 digits of Pi in public. (However, we only need 39 digits of Pi to be able to measure the circumference of the observable universe, but we won’t tell him that.)

So what happens on Pi Day (aside from math enthusiasts around the world uniting)? Well, the San Francisco-based museum that started the celebration throws an annual party, MIT will let you know if you made their acceptance cut, and you can probably find local pizza shops that will give you a discount.

And don’t forget, Pi Day also coincides with Albert Einstein’s birthday (he’d be 137 years old today).

Celebrate today by learning more about Pi!

Posted in Announcements
Tagged
Efficiency of water electrolysis

Together with his team, ECS member Wolfgang Schuhmann develops new electrodes, for the production of hydrogen.
Image: Ruhr Universitaet Bochum

New research out of Ruhr Universitaet Bochum is showing big gains for water electrolysis, with new efficiency levels double that of previous efforts.

By applying a layer of copper atoms in conventional platinum electrodes, researchers were able to desorption easier for the catalyst surface. This system then generated twice the amount of hydrogen than a platinum electrode without a copper layer.

This breakthrough could help water electrolysis gain a better reputation as a method for hydrogen production. Prior to this breakthrough, too much energy was lost in the process to prove it efficient. Now, the efficiency level has been doubled.

This from Ruhr Universitaet Bochum:

The researchers modified the properties of the platinum catalyst surface by applying a layer of copper atoms. With this additional layer, the system generated twice the amount of hydrogen than with a pure platinum electrode. But only if the researchers applied the copper layer directly under the top layer of the platinum atoms. The group observed another useful side effect: the copper layer extended the service life of the electrodes, for example by rendering them more corrosion-resistant.

Read the full article.

“To date, hydrogen has been mainly obtained from fossil fuels, with large CO2 volumes being released in the process,” said Wolfgang Schuhmann, ECS member and lead author of the study. “If we succeeded in obtaining hydrogen by using electrolysis instead, it would be a huge step towards climate-friendly energy conversion. For this purpose, we could utilize surplus electricity, for example generated by wind power.”

Measuring the pH level of a solution is usually a relatively simple process. However, that process begins to get more complicated as things get smaller.

Examining changes in acidity or alkalinity at the nanoscale, for example, has been a nearly impossible feat for researchers. Now, a team from the Polish Academy of Sciences in Warsaw, including 11 year ECS member Gunter Wittstock, has developed a novel method of pH measurement at the nanoscale.

The group has developed a nanosensor with the ability to continuously monitor changes in pH levels.

This from the Polish Academy of Sciences in Warsaw:

Used as a scanning electrochemical microscope probe, it allows for the precise measurement of changes in acidity/alkalinity occurring over very small fragments of the surface of a sample immersed in a solution. The spatial resolution here is just 50 nm, and in the future, it can be reduced even further.

Read the full article.

“The ability to monitor changes in the acidity or alkalinity of solutions at the nanoscale, and thus over areas whose dimensions can be counted in billionths of a meter, is an important step toward better understanding of many chemical processes. The most obvious examples here are various kinds of catalytic reactions or pitting corrosion, which begins on very small fragments of a surface,” said Marcin Opallo, lead author in the study.

The team hopes that this new method could lead to monitoring of pH changes taking place in the vicinity of individual chemical molecules.

Nikola Tesla is undoubtedly one of the most recognizable scientists in history, unfortunately much of his groundbreaking research lived in the shadows for the majority of his life. His pioneering contributions to science included alternating current, hydroelectricity, cryogenic engineering, the remote control, neon lighting, and wireless communication just to name a few.

While Tesla may have died around 30 years before the first call made made via a wireless cellphone, his advances in science helped make that reality achievable.

In an effort to offer the man at the core of wireless communication, a new statue has been erected in Tesla’s likeness in Silicon Valley that is equipped with free Wi-Fi.

The statue is the brainchild of Dorrian Porter, and entrepreneur that finds likeness with Tesla in that they were both immigrant that found scientific success in the U.S.

“This unique project… is also intended to inspire the entrepreneurs who come to the Silicon Valley to think big and selflessly—as Tesla did,” says Porter. “The free exchange of information and affordable access to sustainable energy have the potential to solve the critical issues of poverty and education, and inspire peace.”

Hot Topics at PRiME

Deadline for Submitting Abstracts
April 15, 2016
Submit today!

Adam Heller

Adam Heller giving his talk during the Europe Section Heinz Gerischer Award session at the 228th ECS Meeting.

Topic Close-up #4

SYMPOSIUM C04: Pits & Pores 7: Nanomaterials – Fabrication Processes, Properties, and Applications

FOCUSED ON The symposium is focused on recent developments in nanostructured semiconductors, metals and nanocomposite systems. A more detailed understanding of etching and growth mechanisms, and the physical and chemical properties of all types of porous structures is emphasized. It integrates diverse research in different fields such as localized metal corrosion, semiconductor electrochemistry, deposition into pores, matrix materials and optical spectroscopy in order to develop a highly transdisciplinary approach to the topic. Emphasis will be on pit and pore formation, porous-structure/surface-property relations, work relevant to the formation of advanced materials and their characterization, and applications of these materials in different areas of science. The symposium brings together scientists from various research fields such as materials science, electrochemistry, physics, chemistry, engineering and biology.

(MORE: See a full list of topic close-ups.)

NOTING THAT an issue of ECS Transactions is planned to be published “before” the meeting.

Manuscript submission deadline: July 01, 2016

INVITED SPEAKERS: Takashi Yanagishita, Metropolitan University Tokyo, Japan; Shinji Yae, University of Hyogo, Kobe, Japan; Hiroki Habazaki, Hokkaido University, Sapporo, Japan; Kurt Hebert, Iowa State University, USA; Robert Kelly, University of Virginia, USA; Julien Bachmann, Friedrich-Alexander-University Erlangen, Germany; Kurt Kolasinski, West Chester University, USA; Bernard Gelloz, Nagoya University, Japan; Ester Segal, Technion – Isreal Institute of Technology, Haifa, Isreal; Kazuhiro Fukami, Kyoto University, Japan. Learn about all the topics!

(more…)

President Obama has pushed through the first installment of a pledged $3 billion from the cabinet to help poor countries fight climate change.

The first chunk of change went to the Green Climate Fund, an international body created to assist developing countries adapt to and mitigate climate change.

The effects of climate change often hit the world’s poor the hardest. Millions of the poorest families around the world are farmers, suffering from the devastating effects of harmful emissions affecting local climates. This could sink those families even deeper into poverty, yet they are typically the ones least at fault for the rising levels of emissions such as carbon dioxide.

The $500 million is part of President Obama’s Clean Power Plan, which is aimed at cutting U.S. carbon emissions in order to fight climate change. The first transaction shows that the cabinet is committed to delivering on its pledge made at the United Nations’ climate change conference in Paris in late 2014.

“The United States provided a $500 million grant to the Green Climate Fund,” a State Department official said. “This grant is the first step toward meeting the president’s commitment of $3 billion to the GCF, and shows that the United States stands squarely behind our international climate commitments.”

Not only does this payment help enact measures to fight climate change, President Obama also hopes it will act as a signal to the national and international community after the supreme court block a major piece of the cabinet’s climate plan last month.