Apple Expected to Release Car by 2019

Even after the release of the highly anticipated iPhone 6s, Apple remains in the spotlight with the announcement of the company’s potential electric car.

Apple’s entrance into the electric car race puts them up against competitors such as Tesla and Google. The company aims to follow a Tesla path rather than Google—delivering cars directly to the consumers rather than selling the technology to established automobile manufactures. It is expected that the first iCar (presumed name) will hit the market by 2019.

Electric Car Race

These companies are not the only ones interested in green energy alternatives for automobiles. Car manufactures such as Toyota are also directing their attention to this topic. Aside from the release of the Toyota Prius PHV, the company has also allowed for royalty-free use of their fuel cell patents and has recently partnered with ECS to fund new projects in green energy technology.

Technology companies and automobile makers alike are transitioning away from gas-guzzling vehicles to environmentally friendly automobiles, utilizing hydrogen and electric power more frequently. This is in part due to consumer concern regarding climate change and danger of increased greenhouse gas emissions.

(more…)

Simpler, Cost Effective Electropolishing

Nb cavityPhotos and text by E. Jennings Taylor.

In a response to a recent call for photos, ECS Treasurer E. Jennings Taylor sent us some great shots of the innovative research coming out of Faraday Technology Inc. Here’s the first one:

Regarding this photo, it is a superconducting radio frequency (SRF) cavity made of niobium.

These SRF cavities are used in particle accelerators, such as the Large Hadron Collider (LHC) built by the European Organization for Nuclear Research (CERN), as well as accelerators for medical isotope production and ion therapy treatment.

So, why is this relevant to electrochemistry? The internal surface of these SRF cavities must be electropolished in order for them to achieve their particle accelerating characteristics. Faraday Technology Inc. electrochemists are developing a simpler, more cost effective electropolishing process based on pulse reverse electropolishing .

Take a look at the research in the Journal of The Electrochemical Society.

PS: Do you have interesting science photos you’d like us to share on the ECS Redcast Blog? Send your pictures and a short write-up to rob.gerth@electrochem.org. We’re always looking for great guest posts!

Digestible Batteries to Power Edible Electronics

Since the 1970s, biomedical engineers have been looking for a way to develop a “smart pill” that can monitor and treat ailments electronically. Since then, breakthroughs such as the camera pill have come about—allowing those in the medical field to perform more complex surgeries and study how drugs are broken down.

While we have biologically understood the concept of edible electronics for some time now, researchers have not been able to nail down the appropriate materials that should be used in such an application as to not cause internal damage.

“Smart Pill” to Sense Problems

Researchers from Carnegie Mellon University are putting fourth their proposal to this question in the journal Trends in Biotechnology, which could yield edible electronic technology that is safe for consumption.

“The primary risk is the intrinsic toxicity of these materials, for example, if the battery gets mechanically lodged in the gastrointestinal tract—but that’s a known risk. In fact, there is very little unknown risk in these kinds of devices,” says Christopher Bettinger, a professor in materials science and engineering and author of the study. “The breakfast you ate this morning is only in your GI tract for about 20 hours—all you need is a battery that can do its job for 20 hours and then, if anything happens, it can just degrade away.”

(more…)

Call for Papers: JSS Focus Issue

JSS CoverThis special issue of the ECS Journal of Solid State Science and Technology focuses on defect characterization in semiconductor materials and devices. We especially welcome papers in the following domains:

  • Structural, chemical, electrical and optical characterization of extended defects in semiconductor nano-structures and materials
  • Electrical and optical characterization of point defects in semiconductor nano-structures
  • Semiconductor-device-based defect analysis
  • Impact of (extended) defects on device and circuit operation and yield
  • Defect characterization and control in hetero-epitaxial layers and nano-structures grown on Si, comprising Ge, SiGe, GeSn, III-V and III-nitrides
  • Ab initio calculations and TCAD of the electrical activity of (extended) defects in semiconductor materials and devices
  • Defect control and mitigation strategies during hetero-epitaxial deposition

Find out more!

Submission Deadline | Oct. 21, 2015
Papers accepted into this focus issue are published online within 10 days of acceptance.
The issue is created online an article at a time with the final article published in March 2016.

Development to Boost Solar Cell Usage

new-solar

A working cell from Switzer’s research, with gas evolution.
Image: Sam O’Keefe, Missouri S&T.

In order to satisfy growing energy demands, scientists are looking for ways to develop and deploy a broad range of alternative energy sources that can be both efficient and environmentally friendly. At Missouri University of Science and Technology, a team is working to make clean energy more accessible through the development of a cheap, simple way to split hydrogen and oxygen through a new electrodeposition method.

ECS member and head researcher in the project, Jay Switzer, believes that the new development will produce highly efficient solar cells. He and ECS student member James Hill predict the process will be able to effectively gather solar energy for use as fuel, further increasing the amount of hydrogen available for fuel usage.

“The work helps to solve the problem that solar energy is intermittent,” says Switzer. “Obviously, we cannot have the sun produce energy on one spot the entire day, but our process converts the energy into a form that is more easily stored.”

Electrodeposition for Hydrogen

This from Missouri University of Science and Technology:

Switzer and his team use silicon wafers to absorb solar energy. The silicon is submerged in water, with the front surface exposed to a solar energy simulator and the back surface covered in electrodes to conduct the energy. The silicon has cobalt nano-islands formed onto it using a process called electrodeposition.

(more…)

Stormwater as a Solution to Water Shortage

Communities are facing pressing water and sanitation issues across the globe. Recently, ECS tackled this issue through a partnership with the Bill & Melinda Gates Foundation to establish the Science for Solving Society’s Problems Challenge. While ECS is working on a global level to encourage life-saving research in water and sanitation, researchers at Stanford University and working on innovative solutions to these issues in their own back yard.

Solving Sanitation

The water infrastructure that is currently in place in many semiarid and highly populated regions is reaching its limit. When taking recent droughts and population booms into consideration, many communities are beginning to fear water shortages. However, environmental engineer and Stanford Woods Institute for the Environment Senior Fellow, Richard Luthy, believes that answer to this problem has been right in front of us all along.

“These are billion-dollar problems,” said Luthy. “Meeting water needs in the future is going to depend a lot on how we reuse water and what we do with stormwater.”

Capture and Reuse Stormwater

Luthy is currently looking at ways to capture and treat stormwater to assist in alleviating current water supply issues in densely populated, semiarid environments. The environmental engineer is proposing a stormwater capture center that would be situated on 50-acres of currently unused space. Not only could the treatment plant help secure water infrastructure and the needs of the community, but it could also help the environment.

With stormwater comes runoff. This runoff is contaminated with harmful chemicals and often makes its way into oceans and streams. By recovering and cleaning a large portion of the stormwater, researchers believe that we will see a decrease in water pollution due to runoff.

Wind Turbine System Recycles Wasted Energy

Wind energy has been rising in the ranks when it comes to renewable energy sources. In the United States alone, wind energy produces enough electricity to power roughly 18 million homes—with about 48,000 utility-scale wind turbines operating nationally. While wind energy shows promising potential, there is still room for scientists to tweak this technology in order to yield higher efficiency levels.

The latest prototype of a new wind turbine system was developed with that goal in mind. The new system from researchers at the University of Nebraska-Lincoln (UNL) is set to yield 8.5 percent more electricity than current wind turbines.

Powering the Future

While wind turbines are a promising source of alternative energy, they tend to produce a decent amount of surplus energy that has not been able to be harvested and utilized. The newly developed turbine prototype examines that issue and can now store surplus energy for later use as electricity.

When comparing the new prototype and current generation wind turbines, the new turbines have the potential to yield up to an extra 16,400 kwh of electricity per month—coming in around 18 times the amount of energy a single United States household uses in a month.

(more…)

Submitting to the 229th ECS Meeting?

Deadline for Submitting Abstracts
December 11, 2015
Submit today!

postersTopic Close-up #1

SYMPOSIUM E02: Three dimensional electrodeposition and electroless deposition

FOCUSED ON efforts to extend electrochemical deposition methods to three dimensions, and to find synergies with other additive manufacturing methods, such as deposition onto 3D-printed structures.

NOTING THAT additive manufacturing methods, many of which are called “three-dimensional printing”, are undergoing rapid development due to their ability to create material forms that are not accessible to conventional machining techniques, and due to their capacity for rapid prototyping and optimization when combined with powerful new design software. Learn about all the topics!


posters2Topic Close-up #2

SYMPOSIUM Z02: Nanotechnology General Session featuring Nanoscale Luminescent Materials 4

FOCUSED ON those characteristics of nanoscale materials that relate to their luminescent properties.

RELEVANT TOPICS INCLUDE effects of quantum confinement, the role of surface states, loss mechanisms, methods to improve luminescence efficiency, bulk vs. nanoparticle luminescence, and the role of phonons in nanomaterials.

FEATURING more than 30 invited and keynote speakers from the Americas, Europe, and Asia.

SELECTED papers on the luminescent properties of nanoscale materials may be added to the list of invited talks from among the submitted abstracts. Learn about all the topics!

(more…)

Posted in Meetings

Lab-on-a-Chip Changes Clinical Practice

Biomedical engineers are getting closer to perfecting novel lab-on-a-chip technology. The latest breakthrough from Rutgers University shows promising results for significant cost cutbacks on life-saving tests for disorders ranging from HIV to Lyme disease.

This from Rutgers University:

The new device uses miniaturized channels and values to replace “benchtop” assays – tests that require large samples of blood or other fluids and expensive chemicals that lab technicians manually mix in trays of tubes or plastic plates with cup-like depressions.

Read the full article.

Changing Clinical Practice 

The new development builds on previous lab-on-a-chip research, such as the device from Brigham Young University to improve and simplify the speed of detection of prostate cancer and kidney disease. Researchers from Ecole Polytechnique Federale de Lausanne have also propelled this novel research with their lab-on-a-chip device that can make the study of tumor cells significantly more efficient.

(more…)

New Approach to Materials Design

jz-2015-016605_0003A novel development from Virginia Tech aims to “significantly accelerate materials discovery,” all while combating the pressing global warming issue.

The new approach allows for efficient chemical conversions through a model that can predict novel alloy materials in a fast and accurate manner.

“This is the first example of learning from data in catalysis. We anticipate that this new research approach will have a huge impact in the future of materials design,” said Honglian Xin, lead author of the study.

Catalysts are hugely important in industry, with up to 90 percent of industrial chemicals being made from catalysts. These catalysts range from acids to nanoparticles, and even make up some enzymes in the human body.

Scientists have previously worked to improve catalysts through mixing metals with very precise atomic structures. While the results of these studies have led to metals with promising physical and chemical properties, the process has been costly and time consuming.

This from Virginia Tech:

That is why [the researchers] decided to use existing data to train computer algorithms to make predictions of new materials, a field called machine learning. The approach captures complex, nonlinear interactions of molecules on metal surfaces through artificial neural networks, thus allowing, “large scale exploration alloy materials space,” according to their article.

(more…)