Fuel cells have been receiving a lot of attention in the scientific domain as one of the most promising alternative energy sources. When applying fuel cell technology to both the grid and automobiles, one issue is persistent: cost. Researchers at Argonne National Laboratory (ANNL) have been looking for a way to combat the price issues. Now, a team of researchers led by ECS member Di-Jia Liu have found a potential way to utilize fuel cells without the high cost of development and commercialization.

A New Catalyst

The team’s development revolves around the notion of using naturally abundant materials without sacrificing efficiency. Current, fuel cells work off a platinum catalyst, which is both expensive and scarce. The new catalyst eliminates the need for the precious material, all while demonstrating performance rates comparable to that of a platinum catalyst.

The scientists developed the new catalyst via the synthesis of a highly efficient, nanofibrous non-precious metal catalyst. If this technique proves to be commercially viable, it transition into automotive technology and extend the range of electric vehicles and potentially eliminate the need for charging.

(more…)

Two ECS Members Win Professorship Awards

Two key ECS members have recently received prestigious professorship awards from the University of Florida’s Department of Chemical Engineering. The department has recognized Mark Orazem and Fan Ren for their outstanding commitment to education and innovative research in chemical engineering.

Orazem_2011_cmykMark Orazem was awarded the ExxonMobil Gator Chemical Engineering Alumni Professorship for his excellence in research and tremendous impact in academia. Orazem, an ECS Fellow, joined the Society in 1978 and has previously been recognized for his excellence in student impact in 2012 when he received the ECS Henry B. Linford Award for Distinguished Teaching.

Orazem is a recognized expert on impedance spectroscopy. His research helps to provide valuable insight into such diverse systems as batteries, fuel cells, corroding metals, and human skin. His research ranges in scope—from assisting in the development of biosensors for companies such as Medtronic to engineering dewatering mining waste streams for Mosaic. He served for ten years as an associate editor for the Journal of The Electrochemical Society and authored the seminal Electrochemical Impedance Spectroscopy.

(PS: You can take a course instructed by him at the 228th ECS Meeting!)


Ren_FanFan Ren was awarded the Fred and Bonnie Edie Professorship, representing the highest standards of chemical engineering and serving as a role model for students. Ren is an ECS Fellow and an active member of the ECS Electronics & Photonics Division.

His groundbreaking research centers around electronic material and devices, where he pioneered the use of wide bandgap semiconductor sensors for chemical and biological detections. His acceptance lecture upon receiving the Gordon E. Moore Medal for Outstanding Achievement in Solid State Science and Technology in 2013 focused on this topic of researcher, detailing the cross-section between semiconductors and biosensors for medical applications such as glucose monitoring, biomarker detection for infectious diseases, and cancer diagnosis.

The Advantages of Studies with Short Titles

As title length increases, the number of citations typically decreases. [Click to enlarge]

As title length increases, the number of citations typically decreases.
[Click to enlarge]

With the use of technical terms and complex formals, scientific journal articles are typically a difficult read for the non-expert. However, sometimes scientists themselves also have a difficult time wading through the highly complicated terms in these studies.

A new analysis of 140,000 scientific papers has recently been released, suggesting that studies with shorter titles are more often cited than those with long titles. The reason? Papers with shorter titles may be generally more concise and easier to comprehend.

The analysis began by looking at 20,000 of the most highly cited scientific papers published from 2007 to 2010. Each year consistently showed that papers with shorter titles received more attention.

This from Popular Science:

The situation gets more complicated, though, when you take journal rankings into account. Papers published in more prestigious journals tend to get more citations. Once the authors controlled for that factor, the correlation between shorter titles and higher citations only held up for the years 2007 to 2010. But the results do show that, overall, journals that publish papers with shorter titles tend to receive more citations per paper.

(more…)

Charging Electric Cars in Five Minutes

Earlier this year, we looked at the Israeli start-up company StoreDot’s innovative research in battery technology that could allow a smartphone battery to charge in just 30 seconds.

Now, the same company is taking that same technology and applying it to electric vehicles.

The company is claiming to have tweaked their technology to fully charge an electric car in just five minutes.

According to StoreDot, an array of 7,000 cells could enable electric vehicles to travel up to 300 mile on just a five minute charge.

This from Ecomento:

StoreDot believes it can speed up charging by creating a new variant of the industry-standard lithium-ion chemistry. It uses nanotechnology to make new organic materials that researchers claim have lower resistance than the materials used in current lithium-ion cells. That means electricity can flow through the battery more easily.

(more…)

Tiny Particle, Big Results

EJ Taylor, ECS Treasurer and Chief Technical Officer at Faraday Technology, recently ran across this article from The Economist discussing an accidental discovery that could yield big results.

Materials scientists Wang Changan of Tsinghua University and Li Ju of MIT may have unintentionally found the answer to developing a battery that can last up to four times longer than the current generation.

Initially, the scientists were simply researching nanoparticles made of aluminum. While these tiny particles are good conductors of electricity, they become less efficient when exposed to air. When air hits these tiny particles, a coating of an oxide film begins to develop, greatly affecting the performance. The research the two scientists were working on was not to create a better battery, but rather to eliminate the oxide that coats the particles.

This from The Economist:

Their method was to soak the particles in a mixture of sulphuric acid and titanium oxysulphate. This replaces the aluminium oxide with titanium oxide, which is more conductive. However, they accidentally left one batch of particles in the acidic mixture for several hours longer than they meant to. As a result, though shells of titanium dioxide did form on them as expected, acid had time to leak through these shells and dissolve away some of the aluminium within. The consequence was nanoparticles that consisted of a titanium dioxide outer layer surrounding a loose kernel of aluminium.

(more…)

Wanted: Student Volunteers

student-twitter-adECS is excited to announce the launch of a new pilot program for ECS student members at the 228th ECS Meeting in Phoenix, AZ, October 11-15, 2015.

As a student aide you will work closely with the ECS staff and gain first-hand experience in what it takes to execute an ECS biannual meeting. Take advantage of the opportunity to network and engage with meeting attendees, symposium organizers and ECS staff while learning how registration operates, technical sessions run and how major meeting programs are facilitated.

Interested in participating within this program? Click here to fill out your application today!

Please note, the deadline to apply is September 2nd, the selected candidates will notified by September 4th.

Benefits include a unique behind the scenes experience, networking opportunities, discounted Phoenix meeting registration, an ECS shirt and a certificate of participation! For more information or questions regarding the application process please contact beth.fisher@electrochem.org.

We look forward to seeing you in Phoenix!

Yue Kuo’s work in solid state science has yielded many innovations and has made a tremendous mark on the scientific community. Since his arrival at ECS in 1995, Kuo was named an ECS Fellow, was recently named Vice President of the Society, previously served as an associate editor of the Journal of The Electrochemical Society, and is currently one of the technical editors of the ECS Journal of Solid State Science and Technology. Additionally, Kuo received the ECS Gordon E. Moore Medal for Outstanding Achievement in Solid State Science and Technology at the 227th ECS Meeting.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

Top 5 Less Recognized Renwable Energy Sources

When we think of renewable energy, our minds typically tend toward solar and wind power. However, there are other promising energy sources that commonly fly under the radar. The Guardian recently highlighted five alternative energy sources that have the potential to see great growth in upcoming years and transform the energy landscape as we know it.

Ocean Power
With ocean waters covering more than 70 percent of our plants surface, it only makes sense to harness the energy it naturally produces. Ocean current and waves could be used to drive electric generators and produce an abundant amount of consistent energy. Typically, ocean energy is broken down into four categories: deep water source cooling, tidal power, wave power, and marine current.

The catch? Salt water causes corrosion, which raises an issue when developing a device to capture this energy. The biggest roadblock engineers are currently facing is how to develop an energy harnessing device that makes ocean power commercially viable. With the right scale of development, this from of energy could be at the forefront of a renewable future.

Biomass
Essentially, biomass transforms living things or the waste they produce into electricity. Currently, biomass accounts for 12 percent of the country’s renewable energy generation. While burning the fuel produces CO2, proponents of this source believe it will significantly reduce greenhouse gas emissions due to the growth of plants that produce the energy, which remove the CO2 from the atmosphere.

(more…)

hallAn article by Theodore R. Beck in the Summer 2014 issue of Interface.

A simultaneous invention of an important industrial electrochemical process by two men on two different continents appears improbable. Yet that is what happened. One was in the United States and the other in France. Each inventor was born in the same year, 1863, and at age 22 each independently developed the same technology to produce aluminum by electrolysis. They were rather different personalities.

Charles Martin Hall was born into an educated family and attended Oberlin College. He was a studious scientist who deliberately, step by step, arrived at his process. The father of Paul Louis Toussaint Héroult was a tanner and Paul Héroult was expected to continue in that business. Instead, he attended a school of mines where he was dismissed after the first year because he spent his time thinking about how to produce aluminum rather than his studies. He was more of an intuitive thinker, and on inspiration, first electrolyzed alumina in molten cryolite in his father’s tannery.

heroultThe technology of these two inventors is now known as the Hall-Héroult Process. Hall and Héroult were among the earliest members of ECS, then named “The American Electrochemical Society.”

Charles Martin Hall was born on December 6, 1863 in Thompson, Ohio. His parents were Herman Bassett Hall and Sophronia H. Brooks. His father graduated from Oberlin College in 1847 and studied for three years at the Oberlin Theological Seminary. After ten years doing missionary work the family returned to Ohio in 1860 and to Oberlin in 1873.

Read the rest.

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are free! Follow the links to get the full-text version.

Development of Hybrid Electro-Electroless Deposit (HEED) Coatings and Applications
Electrodeposition can be achieved via electroplating, whereby current is applied to the work piece serving as the cathode, or by using an electroless deposition process, wherein the reductant is a co-dissolved species in the plating solution. Researchers in Canada have developed a combined deposition process, termed hybrid electro-electroless deposition (HEED) to deposit two metals. Read the rest.

“Time of Flight” Electrochemistry
Measurement of molecular diffusion coefficients is important in understanding and determining the kinetics of physical and chemical processes. Among the measurement techniques employed are those based on pulsed field gradient nuclear magnetic resonance spectroscopy, field flow fractionation, and electrochemistry. Read the rest.

(more…)