Record-Breaking Energy Efficiency Levels

An interdisciplinary team has set a new record for direct solar water splitting efficiency. Surpassing the 17 year old record of 12.4 percent, the new achieved efficiency level of 14 percent guarantees a promising future for solar hydrogen production.

While the potential for renewable energy is available across the globe, the ability to harvest and store this energy is not. One solution to achieving global renewable energy is through artificial photosynthesis.

How to Power the Future

Much like organic photosynthesis, artificial photosynthesis coverts sunlight into chemical energy. This highly-researched concept also has the ability to be carried into semiconductor technology.

Essentially, researchers can take the sun’s electrical power and split water into oxygen and hydrogen with high energy density levels. This type of development has the potential to replace current fossil fuels and create a type of energy that does not emit harmful carbon dioxide.

The concept has not been utilized on a commercial level due to the high cost. However, this new development could raise the efficiency levels to a high enough percentage to make the process economically viable.

This from the Helmholtz Association of German Research Centres:

Lead author Matthias May … processed and surveyed about one hundred samples in his excellent doctoral dissertation to achieve this. The fundamental components are tandem solar cells of what are known as III-V semiconductors. Using a now patented photo-electrochemical process, May could modify certain surfaces of these semiconductor systems in such a way that they functioned better in water splitting.

(more…)

2015 ECS Outstanding Student Chapter

student-blog

Members of the Indiana University ECS Student Chapter stand with invited seminar speaker, Prof. Keith Stevenson at the post-seminar reception. From left, Prof. Stevenson, Caitlyn McGuire, Lauren Strawsine, Erin Martin, Anna Weber, Kirstin Morton, Lushan Zhou, Wenqing Shi, Yi Zhou, and Prof. Dennis Peters.

Congratulations to Indiana University Student Chapter for being named ECS’s Outstanding Student Chapter for 2015.

The ECS Outstanding Student Chapter Award was established in 2012 to recognize distinguished student chapters that demonstrate active participation in The Electrochemical Society’s technical activities, establish community and outreach activities in the areas of electrochemical and solid state science and engineering education, and create and maintain a robust membership base.

With a competitive applicant pool this year, the student chapter at Indiana University truly demonstrated how they live out the mission of ECS within their community. As highlighted in their application, “Indiana University’s ECS Student Chapter is dedicated to the promotion of electrochemical and solid state science among three demographics: the general community, the general undergraduate and graduate student body at Indiana University, and the student ECS members.”

(more…)

Posted in Students

Students: Want to Give a Demo in Phoenix?

Edision Theatre Demo - Madhivanan Muthuvel

Madhivanan Muthuvel from the Center for Electrochemical Engineering Research at
Ohio University doing a demonstration on Urea Electrolysis or Pee to Power as part of Edison Theatre.

We have created a special opportunity for student members at the 228th ECS Meeting in Phoenix.

In the exhibit hall we have a booth which we are calling the Edison Theatre. Here we would like to give you the chance to:

  • demonstrate a portion of the research you have been working on
  • share projects you are taking to elementary and middle schools or community events
  • share projects you are working on with peers or cohorts within your academic setting

This is meant to be a “show and tell.” Your presentation can be anywhere from 10-15 minutes long. You can do it once or multiple times during exhibit hours. We’ll be happy to help you with your demonstration.

Edision Theatre Demo -Mike Zach

Mike Zach demonstrating a new electrochemical nanomanufacturing method that’s simple and robust enough to perform on the trade show floor in the Edison Theatre.

Here’s a piece of a video that takes a quick look at Mike Zach at the Edison Theatre from the 227th ECS Meeting in Chicago:

We are scheduling slots in the Theatre on a first come first served basis. We would like to book them as soon as possible so we can start promoting them.

We hope you want to take this opportunity to show off you and your chapter’s hard work.

Contact Rob.Gerth@electrochem.org if you’re interested.

Solar Cells Take Inspiration from Art

One of the more common issues with solar cell efficiency is their inability to move with the sun as it crosses the sky. While large scale solar panels can be fitted with bulky motorized trackers, those with rooftop solar panels do not have that luxury. In an effort to solve this issues, researchers are drawing some inspiration from art in their mission toward higher solar efficiency.

Scientists are applying some of the shapes and designs from the ancient art of kirigami—the Japanese art of paper cutting—to develop a solar cell that can capture up to 36 percent more energy due to the design’s ability to grab more sun.

“The design takes what a large tracking solar panel does and condenses it into something that is essentially flat,” said Aaron Lamoureux, a doctoral student in materials science and engineering and first author on the paper.

In the United States alone, there are currently over 20,000 MW of operational solar capacity. Nearly 640,000 U.S. homes have opted to rely on solar power. However, if the home panels were able to follow the sun’s movement on a daily basis, we could see a dramatic increase in efficiency and usage.

(more…)

Could These ‘Plants’ Fuel the Future?

Scientists working in the field of synthetic photosynthesis have recently developed an artificial “leaf” the can produce natural gas from carbon dioxide. This marks a major step toward producing renewable fuels.

Through a combination of semiconducting nanowires and bacteria, the researchers were able to design an artificial plant that can make natural gases using only sunlight—making the likelihood of a cleaner future more tangible.

From Organic to Synthetic

The roots of this development stem for the natural process of photosynthesis. Instead of the natural byproduct of organic photosynthesis (sugar), these scientists have produced methane.

“We’re good at generating electrons from light efficiently, but chemical synthesis always limited our systems in the past,” said Peidong Yang, head researcher in the study. “One purpose of this experiment was to show we could integrate bacterial catalysts with semiconductor technology. This lets us understand and optimize a truly synthetic photosynthesis system.”

(more…)

Key Development in Hydrogen Fuel Cell Vehicles

Hydrogen fuel cell vehicles have the potential to revolutionize the transportation system. From aiding the fight against climate change through clean emissions to reducing dependency on fossil fuels, hydrogen could potential help power the future and change mobility. Automakers believe that by 2020, there will be tens of thousands of hydrogen fuel cell vehicles on the road. In order to do this, we’re looking towards scientists to make innovation developments leading toward cheaper and more efficient technologies.

Creating a Hydrogen Fuel Cell Vehicle

Shawn Litster, ECS member and associate professor at Carnegie Mellon University, is doing just that. Lister, along with ECS student member William Epting, is focusing his attention on energy technologies that utilize electrochemical devices to further research in the development of the near-perfect fuel cell vehicle.

(Check out a past meeting abstract by the two on fuel cell electrode analysis.)

“We’re looking for ways to minimize the impact of transportation on society and the environment,” said Litster.


Litster and his team have discovered that one of the reasons for the high cost of development for hydrogen fuel cell vehicles is the nanoscale polymer films. While these films offer a host of positive qualities, they require expensive platinum to operate properly.

(more…)

The New iPhone 6S and the Science Behind It

smartphone_homeOnce again, Apple is doing its best to give electronics a huge boost into the future with the release of the new iPhone 6S and iPhone 6S Plus. The technological top dog has upgraded everything from the phone’s processors to its camera—and Apple has finally brought the much anticipated 3D touch capability to life.

While most consumers focus their attention to the phone’s new entertainment abilities and usage innovation, we like to focus on some different aspects here at ECS. While Apple’s Timothy Cook may not have mentioned electrochemistry or solid state science in announcing the new iPhone, these sciences are what allow for higher processing speeds, improved displays, touch recognition, longer battery life, and much more.

Get a full understanding of the science behind the smartphone.

Highlights of the iPhone 6S:

  • Improved 12 megapixel camera
  • Qualocomm chip to double LTE speeds from 150 mbps to 300 mbps
  • Improved TouchID fingerprint sensor
  • New 64-bit chip for 70 percent faster CPU
  • 3D touch capability through sensor technology

Get more info on the iPhone 6S.

PS: Listen to technology and engineering expert Lili Deligianni’s podcast on innovation in electronics!

The Key to Fast-Charging Li-Ion Batteries

Batteries are a critical part of our everyday lives. From phones to laptops to cars to grid energy storage—batteries are essential to many devices. Lithium ion batteries have taken the lead in battery technology, with lithium iron phosphate batteries (LFP) performing particularly well. While it was known that LFP batteries could charge quickly and withstand many factors, the reasons for this were unknown until know.


A team of researchers from the Paul Scherrer Institute and Toyota Central R&D Labs has discovered why LFP batteries can be recharged so rapidly. The team is comprised of ECS member Tsuyoshi Sasaki, past members Michael Hess and Petr Novak, and Journal of The Electrochemical Society (JES) published author Claire Villevieille.

(PS: Check out their past paper, “Surface/Interface Study on Full xLi2MnO3·(1 − x)LiMO2 (M = Ni, Mn, Co)/Graphite Cells.”)

This from Paul Scherrer Institute:

The reason: the step-like concentration gradient gives way to a gentle, ramp-like progression of the lithium concentration. This is because, at higher voltages, the lithium ions involved in the charging process are distributed across the volume of the electrode particles for brief moments as opposed to being herded together in a thin layer boundary. As a result, the lithium can be set in motion more easily during charging, without the need for more energy to be added to negotiate the layer boundary.

(more…)

Real Interface in Conventional SOFC

[Click to enlarge]

[Click to enlarge]

Photos and text by Shu-Sheng Liu.

Here is our image obtained by STEM. It was published recently in the Journal of The Electrochemical Society, 162 (2015) F750-F754. It was also presented in Glasgow conference.

It is a stable high-index Ni-YSZ interface of a conventional solid oxide fuel cell.

Our study is the first attempt to analyze the real interface in conventional SOFC.

Posted in Guest Post
Tagged ,

Hybrid Biomaterial to Change Clinical Practice

Fig1-Mayo-Mao-NEWS-WEBResearchers have developed completely new nanowires by combining synthetic DNA and protein.

Through combining these two promising synthetic biological materials to form nanowires, the door to promising applications requiring biomaterials has been opened.

While both synthetic DNA and synthetic protein structures show great potential in the areas of direct delivery of cancer drugs and virus treatment customization, the hybridization of materials provides even more advantages.

“If your material is made up of several different kinds of components, it can have more functionality. For example, protein is very versatile; it can be used for many things, such as protein–protein interactions or as an enzyme to speed up a reaction. And DNA is easily programmed into nanostructures of a variety of sizes and shapes,” said first author of the study, Yun (Kurt) Mou.

(more…)