es-2015-008758_0004The cleaning of industrial wastewater is a persistent issue across the globe. If left untreated, these harmful waters could enter open watercourses, dispersing contaminants such as mercury and lead. Not only is this an immediate health risk, but it also threatens the entire ecosystem.

Modern wastewater treatment plants have been able to treat the water, but have not been very environmentally conscious. The typical plant produces CO2 by burning fossil fuels for power and the general decomposition of the materials in the wastewater. Not to mention, these things require a lot of power. About 12 trillion gallons of wastewater gets treated each year in the United States along, consuming an alarmingly high 3 percent of the nation’s energy grid.

Researchers have already produced power from pee and made poop potable; so why not develop a new type of wastewater treatment device that significantly lessens the severity of CO2 emissions and simultaneously captures greenhouse gases?

(more…)

The new hybrid sol-gel material provides an electrical energy storage capacity rivaling some batteries.Image: John Toon/Georgia Tech

The new hybrid sol-gel material provides an electrical energy storage capacity rivaling some batteries.
Image: John Toon/Georgia Tech

The future of electric vehicle and defibrillator technologies depend largely on new, innovative energy storage research and improving device power densities. With the high demand for more powerful, efficient energy devices, the researchers from Georgia Tech believe they may have developed what could be the answer to powering large-scale devices.

The team has developed a new capacitor dielectric material. This capacitor—developed from a hybrid silica sol-gel material and self-assembled monolayers of common fatty acid—has the potential to surpass some of today’s conventional batteries in the field of energy and power density.

If the researchers can scale up their current laboratory sample, the new capacitors will be able to provide large amounts of current quickly to large-scale applications.

This from Georgia Tech:

The new material is composed of a silica sol-gel thin film containing polar groups linked to the silicon atoms and a nanoscale self-assembled monolayer of an octylphosphonic acid, which provides insulating properties. The bilayer structure blocks the injection of electrons into the sol-gel material, providing low leakage current, high breakdown strength and high energy extraction efficiency.

(more…)

The new polymer is able to store energy at higher temperatures.Image: Qi Li/Nature

The new polymer is able to store energy at higher temperatures.
Image: Qi Li/Nature

Polymer dielectric materials have many beneficial properties when it comes to energy storage for advanced electronics and power systems. While the materials are highly flexible and have good chemical stability, their main drawback is their limitation of functionality in primarily low working temperatures. In turn, this limits the wider use of polymer dielectric materials for applications such as electric vehicles and underground oil exploration.

However, researchers from Pennsylvania State University have developed a flexible, high-temperature dielectric material from polymer nanocomposites that looks promising for the application of high-temperature electronics.

The researchers, including current ECS member Lei Chen, were able to stabilize dielectric properties by crosslinking polymer nanocomposites that contain boron nitride nanosheets. In testing, the energy density was increased by 400 percent while remaining stable at temperatures as high as 300° C.

With the nanocomposites having huge energy storage capabilities at high temperatures, a much broader application of organic materials in high temperatures electronics and energy storage can be explored.

PS: Interested in polymer research? Make sure to attend the 228th ECS Meeting and get the latest polymer science at our polymers symposia.

First Hydrogen Fuel Cell Ferry

The high-speed hydrogen fuel cell ferry boat is set to hit the waters of the San Francisco Bay Area.Image: Green Car Reports

The high-speed hydrogen fuel cell ferry boat is set to hit the waters of the San Francisco Bay Area.
Image: Green Car Reports

Diesel burning vehicles in the U.S. alone emit pollutants that lead to 21,000 premature deaths each year and act as one of the largest drivers of climate change. The traditional ferry typically burns around one million liters of diesel fuel each year—producing 570 tons of carbon dioxide. In order to help combat this issue, Sandia National Laboratories and the Red and White Fleet ferry company are joining forces to create the first hydrogen fuel cell ferry boat to hit the waters of the San Francisco Bay Area.

Currently in the early stages of development, the boat is set to be named SF BREEZE—an acronym for “San Francisco Bay Renewable Energy Electric vessel with Zero Emissions.” As far as consumption goes, the researchers believe it will take about 1,000 kilograms (2,204 pounds) of hydrogen per day to power the ship.

ICYMI: Listen to Subhash Singhal, a world-leader in the study of fuel cells, talk about the future of energy and climate change.

To satisfy this demand, the construction of the world’s largest hydrogen fueling station will begin off shore and will have the ability to service both sea and land vehicles.

But this isn’t Siemens first take on zero emission ferries. Earlier this year, the lab developed the technology for the world’s first electrically-powered ferry in Norway. This ship has already hit the water successfully, causing no carbon dioxide emissions.

PS: We’re currently accepting abstracts for the 229th ECS Meeting in San Diego! Submit today!

96416_web

Mario Hofmann of National Cheng Kung University shows the example set up of electrochemical synthesis.
Image: Mario Hofmann/IOP Publishing

Graphene has been affectionately coined the “wonder material” due to its strength, flexibility, and conductive properties. The theoretical applications for graphene have included the five-second phone charge, chemical sensors, a way to soak up environmentally harmful radioactive waste, and even the potential to improve your tennis game. While everyone has big expectations for the wonder material, it’s still struggling to find its place in the world of materials science.

However, a team of researchers may have found a way to expand graphene’s potential and make it more applicable to tangible devices and applications. Through a simple electrochemical approach, researchers have been able to alter graphene’s electrical and mechanical properties.

Technically, the researchers have created a defect in graphene that can make the material more useful in a variety of applications. Through electrochemical synthesis, the team was able to break graphite flakes into graphene layers of various size depending on the level of voltage used.

The different levels of voltage not only changed the material’s thickness, it also altered the flake area and number of defects. With the alternation of these three properties, the researchers were able to change how the material acts in different functions.

“Whilst electrochemistry has been around for a long time it is a powerful tool for nanotechnology because it’s so finely tuneable.” said Mario Hofmann, a researcher at National Cheng Kung University in Taiwan, in a press release. “In graphene production we can really take advantage of this control to produce defects.”

The defected graphene shows promising potential for polymer fillers and battery electrodes. Researchers also believe that by revealing and utilizing the natural defects in graphene, strides could be made in biomedical technology such as drug delivery systems.

This new extended-release device has less risk of breaking or causing intestinal blockage than previous prototypes.Image: MIT

This new extended-release device has less risk of breaking or causing intestinal blockage than previous prototypes.
Image: MIT

Researchers and engineers in all corners of science have been looking at the ways their specific technical interest area can affect medicine and health care. Whether it be implantable microchip-based devices that could outpace injections and conventional pills or jet-propelled micromotors that can swim through the body to take tissue samples and make small surgical repairs, researchers have been seeing the interdisciplinary nature of science and how it could impact quality of life.

A team of researchers from MIT’s Koch Institute for Integrative Cancer Research have teamed up with Massachusetts General Hospital to develop the latest scientific advancement in health care in the form of a polymer gel that will allow for ultra-long drug delivery.

The prototype that the team has built is essentially a ring-shaped device that can be folded into a capsule. Once the patient has ingested the capsule, the device can expand back to its original form and deliver drugs over a number of days, weeks, or potentially months.

(more…)

Japan Turns Golf Courses into Solar Farms

It’s all about repurposing. At least, that looks to be the case for Japan’s energy grid.

Beth Schademann, ECS’s Publications Specialist, recently came across a Business Insider article detailing Japan’s initiative to turn abandoned golf courses into solar power plants.

Japan’s Kyocera Corporation is taking the unused green space and making clean, renewable solar farms. They’re starting off big with a 23 megawatt solar plant that will produce enough energy to power around 8,100 households.

And they’re not stopping there. After their first project goes live in 2017, the company will go full force into their 92 megawatt solar plant project that is expected to power over 30,000 households.

Japan’s abandoned golf courses are prime real estate for solar farms, and there’s no shortage of potential here.

(more…)

Interning with ECS

jawann

Jawann McBeth, Development and Membership Intern

People may have their own assumptions of what an intern in today’s society should be doing. What kind of work should they be required to do? How many hours? Should they be getting paid? Decaf or two sugars with your coffee?

My name is Jawann McBeth, Communication & Media Arts major and rising senior at Montclair State University. I’ve lived in Mercer County, New Jersey my entire life and all those years I never knew The Electrochemical Society was just a few miles up the road. Being the newest member of ECS as a Development and Membership Intern, the last few weeks have been a transformative experience like none I have had in the past. I mean that both literally and figuratively.

I am actually transforming membership information from hard copy, sometimes ancient documents that date back to 1902, into a digital database that will allow files to be maintained permanently without the fear of missing or damaged documents. This project encompasses the scanning and organization of all of their membership information, such as application forms, resumes, change of address notifications and any other miscellaneous paperwork relevant to each member.

As I work on one of the biggest projects of my internship, I wonder to myself how could such a substantial organization with members such as Thomas Edison and H. H. Dow have been so far under my radar? Yet, what is most surprising about the organization is not how little people may know about the Society, but how much the work of the members is an integral part of most people’s daily lives.

(more…)

Posted in Announcements
Tagged ,

Acheson-Medal_transThe Edward Goodrich Acheson Award, one of the oldest and most prestigious ECS honors, was established in 1928 for distinguished contributions to the advancement of any of the objects, purposes or activities of The Electrochemical Society. Read the nomination rules.

The recipient shall be an ECS member who is distinguished for contributions consisting of: (a) discovery pertaining to electrochemical and/or solid state science and technology, (b) invention of a plan, process or device or research evidenced by a paper embodying information useful, valuable, or significant in the theory or practice of electrochemical and/or solid state science and technology.

Did you know that since 1929, ECS has presented the Acheson Award 43 times? Of that number, 33 award winners have also served the organization as President. The most recent recipient of this award was Ralph Brodd in 2014, the 79th ECS President who was esteemed for over 40 years of experience in the battery industry.

Edward Goodrich Acheson (1856 – 1931) was an American chemist and the 6th President of The Electrochemical Society who invented the Acheson process, which is still used to make silicon carbide (carborundum) and later a manufacturer of carborundum and graphite. Acheson worked with Thomas Edison and experimented on making a conducting carbon to be used in the electric light bulb.

Regarded by many as the “father of modern electrochemistry,” Bard is best known for his work developing the scanning electrochemical microscope†, co-discovering electrochemiluminescence**, contributing to photoelectrochemistry* of semiconductor electrodes, and co-authoring a seminal textbook in the field of electrochemistry. He served as editor-in-chief of the Journal of the American Chemical Society from 1982-2001.

Bard is considered one of today’s 50 most influential scientists in the world. He joined the Society in 1965 and became an ECS Honorary member in 2013. ECS established the Allen J. Bard Award in 2013 to recognize distinguished contributions to electrochemistry.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

PS: We’re in the process of creating a JES Focus Issue honoring Allen J. Bard. We invite contributions in the spirit of Dr. Bard’s multifaceted works in electroanalytical chemistry. Find out more!

(more…)