Power Behind the Next Electronics Revolution

The semiconducting silicon chip brought about a wave of electronic transformation the propelled technology and forever changed the way society functions. We now live in a digital world, where almost everything we encounter on a daily basis is comprised of a mass of silicon integrated circuits (IC) and transistors. But with the materials used to develop and improve these devices being pushed to their limits, the question of the future of electronics arises.

The Beginnings

The move towards a digital age really took flight late in 1947 at Bell Labs when a little device known as the transistor was developed. After this development, Gordon Moore became a pioneering research in the field of electronics and coined Moore’s law in 1965, which dictated that transistor density would double every two years.

Just over 50 years after that prediction, Moore’s law is still holding true. However, researchers and engineers are beginning to hit a bit of a roadblock. Current circuit measurement are coming in a 2nm wide—equating to a size roughly between a red blood cell and a single strand of DNA. Because the integrated circuits are hitting their limit in size, it’s becoming much more difficult to continue the projected growth of Moore’s law.

The question then arises of how do we combat this problem; or do we move toward finding an alternative to silicon itself? What are the true limits of technology?

(more…)

Olin Palladium Award Winner

MacdonaldDigby D. Macdonald of the University of California, Berkeley will be awarded the 2015 Olin Palladium Award for his distinguished contributions to the field of electrochemical and corrosion science.

Macdonald is currently the Professor in Residence at the University of California, Berkeley’s Departments of Nuclear Engineering and Materials Science and Engineering.

Throughout his rousing career, Macdonald held numerous positions in academia at such institutes as Ohio State University and Pennsylvania State University. In 2011, Macdonald was nominated for a Nobel Prize in Chemistry. He has been recognized by many for his scientific achievements, receiving the Frumkin Memorial Medal in 2015 and the Gibbs award in 2013.

His work on passivity and the properties of aqueous solutions at high temperatures and pressures have not only impacted the landscape of science, but have also made him a pillar and mentor for many students in electrochemical and corrosion science.

Science joining ECS in 1975, the Society has made Macdonald a Fellow and presented him with both the Wagner Memorial and Uhlig Awards.

The award will be presented at the 228th ECS Meeting in Phoenix, Arizona this October. Registration for this meeting is now open!

And take peek at Macdonald’s meeting abstract entitled, “Some Critical Issues of the Breakdown of Passive Films.”

ECS’s Nate Lewis is propelling his vision of efficient and affordable alternative energy sources with the new development of an “artificial leaf” system that splits water through solar energy to create hydrogen fuel.

(PS: Make sure to catch Nate Lewis’ presentation this October at the fifth international Electrochemical Energy Summit held during the 228th ECS Meeting!)

“This new system shatters all of the combined safety, performance, and stability records for artificial leaf technology by factors of 5 to 10 or more,” says Lewis, a 33-year ECS member and scientific director of the Joint Center for Artificial Photosynthesis.

Shattering Water Splitting Records

He and his team, including postdoctoral scholar and ECS member Ke Sun, were able to achieve recording-setting outcomes through the development of a advice with three novel components: two electrodes, one photoanode and one photocathode, and a membrane.

This from Futurity:

The photoanode uses sunlight to oxidize water molecules, generating protons and electrons as well as oxygen gas. The photocathode recombines the protons and electrons to form hydrogen gas.

(more…)

Call for Papers: ECS Focus Issues

focus_issues_coversECS publishes special or “focus” issues in order to highlight scientific and technological areas of current interest and future promise that are expanding rapidly or have taken a new direction.

The editors of the Journal of The Electrochemical Society (JES) and the ECS Journal of Solid State Science and Technology (JSS) are calling for papers for these upcoming focus issues:

Defect Characterization in Semiconductor Materials and Devices
Submission Deadline: October 21, 2015
In recent years, a rapidly growing interest and concern have developed within the microelectronics industry and research community with respect to defect characterization in hetero-epitaxial layers and nano-structures for CMOS and photonic applications. Read more.

Honoring Allen J. Bard
Submission Deadline: September 30, 2015
ECS welcomes original research contributions to a special issue of the Journal of The Electrochemical Society honoring Allen J. Bard. Prof. Bard has been a pioneer of modern electrochemistry for over 60 years and a long-standing member of the Society. For his 80th birthday, The Electrochemical Society founded the Allen J. Bard Award in 2013 to honor his extensive contributions to the field of electrochemistry; the first award was given in May 2015. Read more.

Honoring Dr. Allen Bard

Henry White and Allen Bard

Henry White and Allen J. Bard at the 227th ECS Meeting in Chicago, IL

This past May, ECS presented Dr. Henry White with the first ever Allen J. Bard Award at the 227th ECS Meeting in Chicago. A former student of Bard himself, Dr. White has worked with his research team to advance new methods to determine the structure of biological polymers like DNA, develop novel batteries with increased energy storage capacity, and investigate the delivery of drugs through human skin via electrical currents. ECS is delighted to begin the tradition of the Allen J. Bard Award so auspiciously.

Yet, the inaugural presentation of the Bard Award at the 227th ECS Meeting was also a culmination: the satisfying conclusion to a story of hard work and generosity and the enduring connection between an educator and the lives he impacted. The desire to create an award in honor of Dr. Bard first arose in May 2013. Through the generous outpouring of many of Bard’s former students, ECS was able to fully endow the award in only two years. Thanks to this support, the Allen J. Bard Award will continue to honor the achievements of outstanding electrochemists for years to come. Below, please see a timeline of the Allen J. Bard Award, including some of Dr. Bard’s major accomplishments.

To further celebrate the impact of Dr. Bard, ECS now hopes to establish a symposium in his honor, which will occur in conjunction with the presentation of the award. Topics for the symposium will be guided by the award winner and by that spirit of creativity and intellectual adventurousness characteristic of Bard and his work.

To support the Bard Award endowment, please consider donating online.

nanomaterialMore and more people are looking toward nanomaterials to help solve issues in the energy infrastructure. Not only could this technology lead to more efficient and cost effective renewable energy sources, but could also help the development of devices that remove pollutants from the air and water. In fact, nanotechnology has such a vast scope that there is potential for it to impact almost all areas of society.

“There is not a field that is not touched,” said nanomaterials expert Francis D’Souza of the University of North Texas. “It is a group of very eminent scientists exploring the possibilities in every single field. You can expect big discoveries and breakthroughs.”

While nanomaterials are infiltrating everything from electronics to biomedical applications, many scientists have shift their primary focus to energy harvesting.

“There are so many new capabilities that can be exploited with nanotechnology, from dramatic improvements to solar conversion efficiency to battery systems with higher storage capacity and faster charging and discharging cycles to miniaturized power management systems, so we can have energy storage that can last for a long time,” said IBM’s Lili Deligianni.

(more…)

Lili Deligianni is a Research Scientist and Principal Investigator at IBM’s Thomas J. Watson Research Center. Her innovative work in chemical engineering has led to cutting-edge developments in chip technology and thin film solar cells. Lili has been with ECS for many years and currently serves as the Society’s Secretary.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

13 New Job Postings in Electrochemistry

wordle 10ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Electroanalytical Sales Scientist
Pine Research Instrumentation – Durham, NC
The position encompasses critical aspects of sales and support for the electrochemical instrumentation product line offered by Pine Research Instrumentation. This position couples deep understanding of electrochemical science with the ability to communicate and interact with other people. Successful individuals in this position enjoy the unique chance to blend interpersonal skills (for sales and marketing purposes) with scientific knowledge (for technical support and advice).

PhD Student in Electrochemical Conversion of Biomass
Ohio University – Athens, OH
The Center for Electrochemical Engineering Research (CEER) at Ohio University is searching for PhD students to join a team of researchers working on electrochemical conversion of biomass. The successful candidate will develop materials and processes for electrochemical conversion of biomass to fuels and industrial chemicals, including developing electrocatalysts and reactor systems. Product stream analysis is an integral component of this program.

(more…)

ORCID Explained in One Minute

Logan Streu, ECS Content Associate & Assistant to the CCO, recently came across a video from The Scholarly Kitchen explaining how ORCID works (with dolls as visual aids).

Learn more about ORCID! Check out Logan’s articles on the benefits of ORCID identifiers:

Find out more about signing-up for ORCID!

In an effort to address climate change, President Obama is setting the United States on the path towards a clean energy economy.

Recently, President Obama announced the country’s plan to drive alternative energy innovation and accelerate the transition to clean energy. Growing on the already established ENERGY STAR program, the executive actions focus on implementing clean, efficient, and affordable energy technologies across multiple sectors of the United States.

Highlights

  • More funding for energy projects utilizing innovative technology, including an additional $1 billion
  • A total of 11 projects across the country will receive $24 million for projects that have the potential to double the amount of energy a solar panel can produce
  • Bringing a 485-megawatt photovoltaic facility to produce enough energy to power more than 145,000 homes
  • PACE (Property-Assessed Clean Energy) project to make alternative energy more easily accessible for single-families

(more…)