The new arrangement of photovoltaic materials includes bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan).Image: UCLA

The new arrangement of photovoltaic materials includes bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan).
Image: UCLA

A team of UCLA scientists are delivering good news on the solar energy front with the development of their new energy storage technology that could change the way scientists think about solar cell design.

Taking a little inspiration from the naturally occurring process of photosynthesis, the researchers devised a new arrangement of solar cell ingredients to make a more efficient cell.

“In photosynthesis, plants that are exposed to sunlight use carefully organized nanoscale structures within their cells to rapidly separate charges — pulling electrons away from the positively charged molecule that is left behind, and keeping positive and negative charges separated. That separation is the key to making the process so efficient,” said Sarah Tolbert, senior author of this research and published ECS author.

PS: Check out Tolbert’s recently published open access paper in the Journal of The Electrochemical Society entitled, “The Development of Pseudocapacitive Properties in Nanosized-MoO2.”

The currently dilemma in solar cell design revolves around developing a product that is both efficient and affordable. While conventional silicon works rather well, it is too expensive to be practical on a large scale. More engineers and researchers have been moving to replace silicon with plastic, but that leads to efficiency levels taking a hit.

(more…)

ECS Student Chapters Expanding

student-chaptersAt the 227th ECS Meeting in Chicago, IL, the ECS Board of Directors voted to approve our newest ECS student chapters. Welcome to ECS:

  • Belgium Student Chapter – Sebastien Moitzheim, Chapter President
  • Illinois Institute of Technology Student Chapter – Lin Chen, Chapter President

Are you looking to start your own ECS student chapter? The next opportunity is right around the corner.

Time-frame for approval at the 228th ECS Meeting in Phoenix, AZ:

  • Student Chapter Applications Due to ECS Headquarters – Friday, September 4, 2015
  • Individual Membership Committee Approval – Monday, October 12, 2015
  • Board of Directors Approval – Thursday, October 16, 2015
  • Notification of Status – Week of October 19, 2015

For more information about student chapters, contact Beth Fisher at beth.fisher@electrochem.org.

Beth Schademann, ECS’s Publications Specialist, recently came across a Huffington Post article detailing some life-saving innovations in water purification.

A simple bag called the Fieldtrate Lite has made its way to isolated communities that lack clean water in an effort to save lives through improved sanitation.

The water filtering bag is a development of Singapore’s WateROAM, who specialize in portable water filtration systems. The Fieldtrate Lite filters dirty water though membranes, turning it into potable water in a very short period of time. The bag is specifically appealing for disaster relief operations and rural communities without access to clean water.

“Our vision is to build a world where no man shall face prolonged thirst,” said David Pong, WateROAM’s chief executive.

(more…)

2015 Summer Fellowship Recipients

ECS Summer Fellowship_Gen Chen NMSU

From New Mexico State University, Dr. Luo presents award check to ECS Student Member & ECS Edward G. Weston Summer Fellowship Recipient, Mr. Chen.

Beginning in 1928, these awards have been established over the years to assist students during the summer months in pursuit of work in the field of interest to The Electrochemical Society.

Announcing the ECS 2015 Summer Fellowship Recipients

Mr. Gen Chen
New Mexico State University
Advisor, Dr. Hongmei Luo
Edward G. Weston Summer Fellowship

Mr. Hadi Khani
Mississippi State University
Advisor, Dr. David Wipf
Colin Garfield Fink Summer Fellowship

Mr. Mohammad Mahdi Hasani-Sadrabadi
Georgia Institute of Technology
Advisor, Dr. Karl I. Jacob
Joseph W. Richards Summer Fellowship

University of Cambridge Ph.D. candidate, Raphaële Clément (left), receives her ECS 2015 Summer Fellowship award check from advisor & ECS member, Professor Clare Grey (right).

University of Cambridge Ph.D. candidate, Raphaële Clément (left), receives her ECS 2015 Summer Fellowship award check from adviser & ECS member, Professor Clare Grey (right).

Ms. Raphaele Clement
University of Cambridge
Advisor, Dr. Clare Grey
F. M. Becket Summer Fellowship

Mr. Alexander Pak
University of Texas at Austin
Advisor, Dr. Gyeong S. Hwang
Herbert H. Uhlig Summer Fellowship

Summer Fellowship Subcommittee (through the ECS Education Committee)
Mark Orazem
Vimal Chaitanya
Kalpathay Sundaram
Bryan Chin
Peter Mascher

Are you interested in supporting the ECS Summer Fellowship program or creating a new fellowship through ECS? Contact us for more information.

Posted in Students

Analyzing Thin Film Break-Up

The open-source code, WulffMaker, is available as a Wolfram computable document format file or a Mathematica notebook.Image: MIT/Rachel Zucker

The open-source code, WulffMaker, is available as a Wolfram computable document format file or a Mathematica notebook.
Image: MIT/Rachel Zucker

Recent PhD recipient and past ECS student member, Rachel Zucker, examined one of the most complex issues in materials science and has developed a range of mathematical solutions to explain the phenomena known as “dewetting” in solid films. In defense of her thesis, Zucker modeled dewetting in microscale and nanoscale thin films.

Dewetting can be boiled down to the general break-up of material due to excess surface energy. Zucker’s development provides us with not only a new understanding of this phenomenon, but also a way to simulate it. When analyzing solid state dewetting, issues becomes very prominent as engineers attempt to make products with smaller and smaller features.

“The big takeaway is: One, we can write down formulation of this problem; two, we can implement a numerical method to construct the solutions; three, we can make a direct comparison to experiments; and that strikes me as what a thesis should be — the complete thing — formulation, solution, comparison, conclusion,” said W. Craig Carter, MIT professor and Zucker’s co-adviser.

(more…)

8 New Job Postings in Electrochemistry

Job GraphicECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

ECS Journals Technical Editor
The Electrochemical Society – Pennington, NJ
ECS (The Electrochemical Society) is seeking to fill the position of Technical Editor of the Electronic and Photonic Devices and Systems Technical Interest Area for the ECS Journal of Solid State Science and Technology and ECS Solid State Letters.

Materials Scientist
Nano One Materials Corp. – Burnaby, Canada
Nano One is looking for an experienced, ambitious and creative scientist with proven organizational skills and an interest in industrial technology development. The successful candidate will be developing lithium ion cathode processing technologies as part of a multi-disciplinary team of scientists, engineers and technologists.

(more…)

PNNL scientist Jian Zhi Hu shows a tiny experimental battery mounted in NMR apparatus.Image: PNNL

PNNL scientist Jian Zhi Hu shows a tiny experimental battery mounted in NMR apparatus.
Image: PNNL

While working on a unique lithium-germanide battery, Pacific Northwest National Laboratory (PNNL) researchers knew something was happening inside the battery to dramatically increase its energy storage capacity, but they couldn’t see it. With no way to analyze the reaction occurring, the researchers could not understand the process. In order to solve the problem, the researchers developed a novel nuclear magnetic resonance (NMR) technique to allow insight and understanding of the electrochemical reactions taking place in the battery. Essentially, they have developed an NMR “camera.”

In the end, this leaves the scientists with not only a novel lithium-germanide battery with a distinctly high energy density, but also an NMR device that can be used to examine reactions as they happen inside the battery.

This from PNNL:

By using the NMR process to look inside the battery and observe this reaction as it happened, the scientists found a way to protect the germanium from expanding and becoming ineffective after it takes on lithium. The secret proved to be forming the germanium into tiny “wires” and encasing them in small, protective carbon tubes to limit the expansion. This technique significantly stabilizes battery performance. Without embedding germanium in carbon tubes, a battery performs well for a few charging-discharging cycles, but fades rapidly after that. Using the “core-shell” structure, however, the battery can be discharged and charged thousands of times.

(more…)

100% Renewable Energy Vision

Can the United States convert to 100 percent clean, renewable energy by 2050? Stanford University’s Mark Z. Jacobson and U.C. Berkeley’s Mark Delucchi certainly think so. In fact, they’ve laid out a very comprehensive plan to do just that.

The two researchers have recently published a study detailing the viability of the U.S. converting to 100 percent green energy. They’re calling for aggressive changes in both infrastructure and energy consumption on a state-by-state level to achieve this goal. The new study shows that this transition from fossil fuels to renewable resources is not only technically possible with already existing technologies, but it’s also economically feasible.

“The main barriers are social, political and getting industries to change. One way to overcome the barriers is to inform people about what is possible,” Jacobson said. “By showing that it’s technologically and economically possible, this study could reduce the barriers to a large scale transformation.”

(more…)

Engineering Stretchable Batteries

Recently, scientists have been looking at the Japanese paper-folding art of origami as inspiration for novel flexible energy-storage technologies. While there have been breakthroughs in battery flexibility, there has yet to be a successful development of stretchable batteries. Now, researchers from Arizona State University have unveiled a way to make batteries stretch, yielding big potential outcomes for wearable electronics.

The Arizona State University research team includes ECS member and advisor of the ECS Valley of the Sun student chapter, Candace K. Chan. Chan and the rest of the team were inspired by a variation of origami called kirigami when developing this new generation of lithium-ion batteries.

According to the researchers, the new battery can be stretched more than 150 percent of its original size and still maintain full functionality.

Student Poster Session Award Winners

student-award-winners

Vimal Chaitanya, member of the ECS Education Committee, Heather Barkholtz, Jonathan Kucharyson, Maria Lukatskaya, ECS President Paul Kohl. (Not pictured Rajankumar Patel)

Each biannual meeting hosts a general student poster session and presents awards representing two categories: electrochemical and solid state science and technology.

Winners (pictured) were honored at the 227th ECS Meeting in Chicago on Wednesday May 27, 2015.

Here are the winners:

1st Place – Electrochemical
Jonathan Kucharyson
University of Michigan
Poster Number 2241
Stability Assessment and Charge Storage Mechanism of Vanadium (III) Acetylacetonate Complexes for Non-Aqueous Redox Flow Batteries

2nd Place – Electrochemical
Maria Lukatskaya
Drexel University
Poster Number 2235
Cation Intercalation of High Volumetric Capacitance of Two-Dimensional Titanium Carbide

1st Place – Solid State
Heather Barkholtz
Northern Illinois University
Poster Number 2208
Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks

2nd Place – Solid State
Rajankumar Patel
Missouri University of Science & Technology
Poster Number 2216
Lithium-Ion Battery Cathodes Coated with Ultra-Thin Conductive Films for Long Cycle Life

This poster session provides a forum for graduate and undergraduate students to present research results of general interest to ECS. The purpose of this session is to foster promote work in both electrochemical and solid-state science and technology, and to stimulate active student interest and participation in ECS.

Cash prizes are given to the presenting student author on each winning paper; the amounts are awarded at the discretion of the organizers and judges.

Your next chance will be at the 229th ECS Meeting in San Diego. Look for the call for papers soon!

Posted in Students