The Excrevator will help put an end to emptying pit latrines by hand.Image: NC State University

The Excrevator will help put an end to emptying pit latrines by hand.
Image: NC State University

Critical technology gaps in water, sanitation, and hygiene are being faced all over the world. According to UNICEF, 2.5 billion people—36 percent of the world’s population—don’t have access to a toilet. Due to this, many people in the developing world either practice open defecation or utilize pit latrines. In turn, this leads to a high risk of contracting diseases ranging from typhoid to hepatitis.

Tate Rogers, an engineering student from North Carolina State University, decided that something has to be done about this. In 2011, Rogers began developing a device that would help those in the developing world more safely deal with raw sewage.

It’s four years later, and the project is still under way—but it’s beginning to come to fruition.

(more…)

Gasteiger-imageHubert Gasteiger of Technische Universität München’s Institute for Technical Electrochemistry will be awarded the 2015 Physical and Analytical Electrochemistry Division David C. Grahame Award for his work focusing on materials, electrodes, and diagnostics development for fuel cells and batteries.

The prestigious award was established in 1981 to encourage excellence in physical electrochemistry research.

Hubert A. Gasteiger has touched many aspects of electrochemical science, from academia to industry. He studied at UC Berkeley before he went on to do a one-year postdoctoral fellowship at the Lawrence Berkeley National Laboratory, followed by academic research with Jürgen Behm at Ulm University—where he established a research group in heterogeneous gas-phase catalysis and electrocatalysis.

(more…)

They hybrid supercapacitor can store large amounts of energy, recharge quickly, and lost for more than 10,000 recharge cycles.Image: UCLA

The hybrid supercapacitor can store large amounts of energy, recharge quickly, and last for more than 10,000 recharge cycles.
Image: UCLA

Researchers from UCLA’s California NanoSystems Institute (CNSI) have developed a new generation of supercapacitors that not only emphasizes the best inherent properties of the supercapacitor itself, but also combines it with some of the best qualities of batteries to make a new energy storage medium.

The new supercapacitor is paper-thin and has an extremely fast recharge time. Additionally, it can last more than 10,000 recharge cycles.

Researchers believe this new development will yield real-world potential to address energy issues and improve personal electronics.

“The microsupercapacitor is a new evolving configuration, a very small rechargeable power source with a much higher capacity than previous lithium thin-film microbatteries,” said Maher El-Kady, co-author of the study and postdoctoral scholar.

(more…)

Successful Semiconductor Meeting in China

An article by ECS Fellow Yue Kuo.

kuo-students

Kuo and three student award winners at CSTIC 2015. (Click on photo to enlarge.)

ECS and SEMI are pleased to announce that the annual China Semiconductor Technology International Conference (CSTIC 2015) successfully concluded on March 16th in Shanghai, China with about 311 speakers and 606 attendees from around the world.

This marks the 16th year that CSTIC held this annual international conference. (ECS is a founding sponsor of the event.) With a focus on semiconductor technology and manufacturing, CSTIC promoted technical exchanges on the latest developments in semiconductor technology and manufacturing and facilitated investment and collaboration in the semiconductor industry in Asia, particularly China.

(more…)

Silicon is the common material used in solar cells and computer chips, but gallium arsenide is an alternative material with many advantages. Image: YouTube/Stanford University

Silicon is the common material used in solar cells and computer chips, but gallium arsenide is an alternative material with many advantages.
Image: YouTube/Stanford University

When we think of chips and solar cells, we think of silicon. However, silicon isn’t the only chip-making material out there.

Researchers from Stanford University are turning their attention away from silicon and are looking toward gallium arsenide to make faster chips and more efficient solar cells.

Gallium arsenide is a semiconductor material with extraordinary properties. Electrons can travel six times faster in gallium arsenide than in silicon, allowing for faster operation of transistors. Unfortunately, cost effectiveness is not one of gallium arsenide’s alluring properties—which has caused researchers to opt for the much cheaper and less effective silicon material.

One single wafer of gallium arsenide could cost up to $5,000, whereas the same size wafer of silicon costs only $5.

(more…)

Plastic + Egg Whites = Bioplastics

After studying the antibacterial properties of bioplastics, researchers found that albumin looks to be the most promising.Image: Cal Powell/UGA

After studying the antibacterial properties of bioplastics, researchers found that albumin looks to be the most promising.
Image: Cal Powell/UGA

Since Leo Baekeland’s invention of Bakelite in 1907, plastic has undergone a lot of transformation. Now, plastic isn’t just used in toys and phones—it also has promising potential in medical applications.

Researchers from the University of Georgia are creating bioplastics from albumin—a protein found in eggs with significant antibacterial properties—to expand plastic’s potential into areas such as wound healing dressing, sutures, catheter tubes, and drug delivery.

“It was found that it had complete inhibition, as in no bacteria would grow on the plastic once applied,” said Alex Jones, a doctoral student at the University of Georgia. “The bacteria wouldn’t be able to live on it.”

The development detailed in this study is critical due the high percentage of hospital-acquired infections.

(more…)

dahn-researchThe electric car industry is on the rise, but battery performance for these vehicles is still not where it needs to be to implement wide-scale usage. To address this issue, researchers from Dalhousie University have produced a ternary blend of electrolyte additives to improve the performance of the li-ion cell.

An open access paper recently published in the Journal of The Electrochemical Society (JES) details a novel development in electrolyte additives that, once applied to the li-ion cell, demonstrate a very high charge-discharge capacity.

The team began their study by investigating the performance of NMC pouch cells and electrolytes with various sulfur or phosphorus electrolyte additives.

They concluded that the new additive will improve the life cycle performance of the li-ion battery, as well as improve upon its safety.

(more…)

Graphene Light Bulb

When it comes to light bulbs, we’ve seen a lot of transformation since Thomas Edison’s practical incandescent bulb. Since then we’ve delved into fluorescent lights, and more recently, LEDs. Now we’re moving on to the next big thing in light bulbs, and that just may be graphene.

The new bulb is projected to last longer and cut energy use by 10 percent.

(more…)

Costa Rica Goes 100% Green

One small step for renewable energy, and one giant leap for Costa Rica.

Costa Rica has not burned one fossil fuel in over 75 days. The country is currently running completely on renewable energy, primarily due to heavy rains and geothermal energy.

The country is now producing enough electricity though hydropower systems, such as pump storage and run-of-the-river plants, to power the majority of Costa Rica. Pair that with additional geothermal, solar, and wind energy sources and 100 percent renewable energy efficiency is achieved.

(more…)

Nanocarbons Division Award Winner

Guldi_DirkDirk Guldi of the University of Erlangen-Nuremberg will be awarded the 2015 Nanocarbons Division Richard E. Smalley Research Award for his outstanding contributions to the areas of charge-separation in donor-acceptor materials and construction of nanostructured thin films for solar energy conversion.

The prestigious award was established in 2006 to recognize in a broad sense, those persons who have made outstanding contributions to the understanding and applications of fullerenes.

Dr. Guldi’s career has a robust background in academia and research. He has held positions at Notre Dame Radiation Laboratory, and has also served as the Associate Editor of the journal Nanoscale. Since 2004, Dr. Guldi has authored or co-authored more than 300 peer-reviewed articles and has been named among the world’s 2014 Highly Cited Researchers by Thomas Reuters.

(more…)