The Nano Electromechanical “Squitch”

A MIT graduate student is changing the landscape of electromechanical switches.

Farnaz Niroui, an electrical engineering graduate student at MIT, has developed a squeezable nano electrochemical switch with quantum tunneling functions. Her development combats the longstanding problem of the switch locking in an “on” position due to metal-to-metal contacts sticking together.

The challenge of this permanent adhesion is called stiction, which often results in device failure. Niroui looks to solve this issue by creating electrodes with nanometer-thin separators.

She has effectively turned stiction from a problem into a solution.

(more…)

Funding Opportunity: Li Batteries

ATL-Logo_144_144_sNingde Amperex Technology Ltd. (ATL, China) is announcing a funding opportunity for researchers actively engaged in rechargeable lithium battery technologies. They are offering $100,000-$500,000 to selected projects addressing current problems associated with lithium metal anodes and proposing viable solutions for the commercialization of long-life, high-performance lithium metal secondary batteries for high energy density applications.

The steep demand for improved rechargeable batteries for use in consumer electronics and electric vehicles is driving the search for new battery electrode materials that will achieve higher energy densities. This funding opportunity seeks to develop scalable technologies for improving the performance of lithium metal anodes.

Please submit technical proposals along with a budget justification, confidentiality disclaimer and a cover page identifying the principle investigator, contact information, affiliations, project duration, total funding requested and submission date to Dr. KaiFu Zhong.

The deadline for submissions is July 31, 2015.

(more…)

ECS Battery Division Awards

Battery icon

The ECS Battery Division is now accepting award nominations.

Please help recognize outstanding contributions of The Electrochemical Society members to the science and technology of primary and secondary batteries and fuel cells through the Battery Division Awards Program.

Nominations are now being accepted for:

These annual awards have been established by the Division to encourage excellence in battery and fuel cell R&D, recognize promising young engineers and scientists and encourage their publication in the publications of the Electrochemical Society.

The deadline for nominations is March 30, 2015.

Before applying, please review the award rules and complete the appropriate form.

I strongly encourage you to submit your nominations. Thank you.

With my best regards,

Robert Kostecki
ECS Battery Division, Chair

Sensors Allow Structures to Communicate

The sensors contain innovative distributive mechanisms, which enable online situation awareness and adaptive learning based on artificial intelligence.Image: GENESI

The sensors contain innovative distributive mechanisms, which enable online situation awareness and adaptive learning based on artificial intelligence.
Image: GENESI

If these walls could talk… actually, they can. A new project that goes by the acronym GENESI (Green sEnsor Networks for Structural monItoring) is working to give infrastructure the ability to tell us how it feels.

GENESI researchers are creating various sensor that fit inside buildings, tunnels, and bridges. This novel generation of green wireless sensor networks’ main aim is to allow structures to communicate their status.

The sensor device itself combines a low power node platform with a multi-source energy harvester, a small factor fuel cell, and an energy efficient radio. Each sensor has the ability to monitor vibrating strain, displacement, temperature, and soil moisture.

(more…)

Glass Coating for Li-S Battery

Researchers have investigated a strategy to prevent this “polysulfide shuttling” phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.Image: Nanoscale

Researchers have investigated a strategy to prevent this “polysulfide shuttling” phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.
Image: Nanoscale

Lithium-sulfur has been a hot topic in battery technology recently. Because of its ability to produce 10 times the amount of energy as a conventional battery, we’ve seen novel innovations such as the all solid state lithium-sulfur battery. Now, the li-sulfur battery is getting a glass coating to further improve its performance.

Researchers at the University of California, Riverside have applied a glass cage-like coating, along with graphene oxide, to the li-sulfur battery. This innovation was developed in order to overcome one of the major issues in commercializing the battery – polysulfides, which cause the battery’s capacity to decrease over its lifetime.

The cathode material traps the polysulfides in a very thin glass cage. Researchers used an organic precursor to construct the trapping barrier.

(more…)

Calls for Papers: ECS Focus Issues

The editors of the Journal of The Electrochemical Society (JES) and the ECS Journal of Solid State Science and Technology (JSS) are calling for papers for these upcoming focus issues:

JES Focus Issues:

JESElectrochemical Interfaces in Energy Storage Systems
Submission Deadline: June 1, 2015
Focusing on a better understanding of the mechanism of electronic and ionic transport phenomena across electrode-electrolyte interfaces and solid-state interphases in electrochemical energy storage systems. READ MORE.

Redox Flow Batteries – Reversible Fuel Cells
Submission Deadline: August 1, 2015
Focusing on integration of renewable energy sources, like wind and solar into the electrical grid system and how that poses major challenges due to their variable nature and unpredictable availability. READ MORE.

(more…)

Solar-Powered Plane to Launch World Tour

In an effort to promote the use of alternative energy, the first solar-powered plane is well on its way to making its round-the-world tour.

After 13 year of invention and ingenuity, Swiss pilots Piccard and Andre Borschberg are beginning preparations to launch the tour in less than a week.

(more…)

ECS Pittsburgh Section News

ECS logoNotes from the Section Chairman

Pittsburgh is gradually evolving to be a hub of education, science and research. The Electrochemical Society bears great relevance to a number of upcoming challenges including energy generation and storage, corrosion, biochemical systems etc., and a number of local universities and companies are perform cutting edge research.

With that in mind, section could act as a forum for fruitful interaction and collaboration. We are reaching out to local members interested in participating and rejuvenating the Pittsburgh Section, which has been dormant for many years. We also aim to give information on local activities and events. These posts will highlight one research group and their work in electrochemical research and also provide an update of local activities.

Since this is the beginning of a new effort, we would like your feedback with regards to activities of interest. Please take the time to complete the survey and help the officers identify areas of interest. And let us know if there is any news you’d like to see in a future issue.

Thanks,
Cliff Walton
(more…)

Wind- and Solar-Powered Car Created from Scraps

Casey Emilius, ECS’s Meetings Coordinator, spotted an article in Inhabitat on an amazing feat in student ingenuity out of Nigeria.

College student Segun Oyeyiola has transformed a Volkswagen Beetle into a wind- and solar- powered car with just $6,000. By using mostly scrap parts donated by friends and family, Oyeyiola was able to keep costs down and skyrocket the renewable efficiency of the car.

The car is fortified by a strong suspension system to hold the weight of the solar panel on the roof and the wind turbine under the hood – which takes advantage of the airflow produced by the car while it’s in motion.

(more…)

Nanoscale Microscopy

The microscope they developed produces x-ray images by scanning a sample while collecting various x-ray signals emerging from the sample.Image: Brookhaven National Laboratory

The microscope they developed produces x-ray images by scanning a sample while collecting various x-ray signals emerging from the sample.
Image: Brookhaven National Laboratory

Researchers have developed a new x-ray microscope that will provide scientists with the opportunity to image nanostructures and chemical reactions down to the nanometer.

The new class of x-ray microscope allows for nanoscale imagining like never before. This development brings researchers one step closer to the ultimate goal of nanometer resolution.

This from Brookhaven National Laboratory:

The microscope manipulates novel nanofocusing optics called multilayer Laue lenses (MLL) — incredibly precise lenses grown one atomic layer at a time — which produce a tiny x-ray beam that is currently about 10 nanometers in size. Focusing an x-ray beam to that level means being able to see the structures on that length scale, whether they are proteins in a biological sample, or the inner workings of a fuel cell catalyst.

(more…)