The Solar Breakthrough

wood_mackenzieCountries around the world have been embracing solar energy with open arms – just take a look at Germany or Switzerland. In the United States, however, solar energy has made its way into the mainstream, but has not gone as far as many environmentalists would like. With the advances in drilling technology in the U.S., one is left to wonder what the next big breakthrough in the nation’s energy supply will be.

The Wood Mackenzie consultant agency out of Scotland believes the next big thing in energy in the U.S. will be solar, and they’ve got some pretty solid reasons.

(more…)

Goodenough’s Big Idea for the Li-Ion Battery

Many of the most influential people of our time are also the most obscure. Take John Goodenough, for example. While he may not be a household name, everyday devices such as laptops and smartphones exist because of his work on lithium-ion batteries.

But even in his 90s, Goodenough isn’t done yet. He’s already invented the lithium-ion’s nervous system, which houses the cobalt-oxide cathode. This is the most important part of every lithium-ion battery, but Goodenough isn’t satisfied with this major scientific feat. Now, he’s looking to go one step further.

This from Quartz:

Today, at 92, Goodenough still goes to his smallish office every day at the University of Texas at Austin. That, he says, is because he’s not finished. Thirty-five years after his blockbuster, the electric car still can’t compete with the internal combustion engine on price. When solar and wind power produce electricity, it must be either used immediately or lost forever—there is no economic stationary battery in which to store the power. Meanwhile, storm clouds are gathering: Oil is again cheap but, like all cyclical commodities, its price will go back up. The climate is warming and becoming generally more turbulent.

Essentially, Goodenough is looking to create a super-battery.

(more…)

Using human skin as one of its charge-collectors, a new flexible generator converts muscle movements into enough power for small electronics.Image: National University of Singapore

Using human skin as one of its charge-collectors, a new flexible generator converts muscle movements into enough power for small electronics.
Image: National University of Singapore

A new discovery from the National University of Singapore has yielded a material that could be used to create battery-free, wearable sensors to power your electronics from the energy generated via muscle movement.

The sensor, which is the size of a postage stamp, uses human skin as one of its charge-collectors. The device takes advantage of static electricity to convert mechanical energy into electricity. It is powered by the wear’s daily activities such as walking, talking, or simply holding an object.

This from IEEE Spectrum:

They tested the device by attaching it to a subject’s forearm or throat, nanopillar side down. Fist-clenching and speaking produced 7.3V and 7.5V respectively. The researchers tested the device as a human motion/activity sensor by attaching it on the forearm and measuring the pulse generated due to holding and releasing of an object.

(more…)

Sensors Make ‘Sixth Sense’ Possible

Scientists from Germany and Japan have developed a new magnetic sensor, which is thin, robust and pliable enough to be smoothly adapted to human skin, even to the most flexible part of the human palm.Image: IFW Dresden

Scientists from Germany and Japan have developed a new magnetic sensor, which is thin, robust and pliable enough to be smoothly adapted to human skin, even to the most flexible part of the human palm.
Image: IFW Dresden

Humans possess five basic senses: touch, sight, hearing, taste and smell. While we do not inherently possess any senses beyond those five, it is possible to tap into extended senses through science and technology.

Magnetoception, for example, is a sense which allows bacteria, insects and even vertebrates like birds and sharks to detect magnetic fields for orientation and navigation. While humans cannot organically perceive magnetic fields, scientist have just created a new sensor that may allow us to do so.

Researchers from Germany and Japan have developed a new magnetic sensor that is thin and pliable enough to be adapted to the human skin. This innovation makes equipping humans with magnetic senses a more viable reality.

This from Leibniz Institute for Solid State and Materials Research Dresden:

These novel magneto-electronics are less than two micrometers thick and weights only three gram per square meter; they can even float on a soap bubble. The new magnetic sensors withstand extreme bending with radii of less than three micrometer, and survive crumpling like a piece of paper without sacrificing the sensor performance. On elastic supports like a rubber band, they can be stretched to more than 270 percent and for over 1,000 cycles without fatigue. These versatile features are imparted to the magnetoelectronic elements by their ultra-thin and –flexible, yet robust polymeric support.

(more…)

Making Solar Wallpaper

Design freedom improves the range of applications of the panels on the surfaces of interior and exterior building spaces.Image: Antti Veijola

Design freedom improves the range of applications of the panels on the surfaces of interior and exterior building spaces.
Image: Antti Veijola

We’ve been talking about climate change and green energy for a while now, so of course we think solar panels should exist wherever light is. Now, that could mean using solar wallpaper to harvest as much energy as possible.

VTT Technical Research Centre of Finland has developed and utilized a mass production method based on printing technologies that will allow the manufacturing of decorative, organic solar panels for use on the surfaces of interior and exterior building spaces.

The new organic photovoltaic panels are only 0.2 mm thick each and include the electrodes and polymer layers where the light is collected.

(more…)

Solutions for the Climate Change Problem

“They will either remember us as the generation that destroyed its home, or the one that finally came to respect it.”

Check out this powerful short film about the need to solve the climate change problem.

Here at ECS, we aim to drive new ideas, experiments, research, and discovery in order to address some of the most pressing global issues. Check out the research our scientists are doing to find a solution to climate change and how our move toward Open Access could have serious implications for action on this topic.

Silicene Moves Us toward Super-Fast Computers

Researchers have created the first transistor out of silicene, the world's thinnest silicon material.Image: University of Texas at Austin

Researchers have created the first transistor out of silicene, the world’s thinnest silicon material.
Image: University of Texas at Austin

There’s an exciting new development in the world of single-atom thick materials, and surprisingly it doesn’t revolve around graphene.

Instead, scientist have shifted their attention to silicene: an exotic form of silicon that has fantastic electrical properties for computer chips.

Like graphene, silicene is a single-atom thick material that allows electrons to flow through it at amazingly high speeds. However, silicene does not occur naturally like graphene – it instead has to be grown in the lab on a sheet of silver.

Because of the difficulty encountered when attempting to produce silicene, its properties have only been theoretical until now. Recently, Deji Akinwande of the University of Texas at Austin turned his attention to this material and found a way to make a transistor out of silicene.

(more…)

Electrochemistry Fights World Cancer

SA10519_WCD_Logo_4cCancer is among the leading causes of mortality worldwide. According to the World Health Organization, approximately 14 million new cases and 8.2 million cancer related deaths were recorded in 2012. If no major breakthroughs are made in the field, that number is expected to rise by 70 percent over the next two decades. In honor of World Cancer Day, we’re taking a look at a few ways electrochemical and solid state science aids in the fight against cancer.

Electrochemical Biosensing for Cancer Detection
By taking biopsy slices for colon cancer, researchers were able to use electrochemical biosensors to distinguish between cancerous and normal epithelial tissues. This development helped promote rapid cancer detection by eliminating pretreatment and providing results obtained within minutes of biopsy removal. Read the full paper here.

Polymer Based Sensors to Diagnose Breast Cancer
There are many issues that mammography faces, including the uncomfortableness of the screening and exposure to radiation. In order to solve this issues, electrochemical scientists developed an Electrical Impedance Tomography (EIT) system. This radiation-less technique aims to enhance early detection capabilities by generating a 3-D map of the breast. Read the full paper here.

(more…)

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.Image: Journal of The Electrochemical Society

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.
Image: Journal of The Electrochemical Society

A team from Japan’s Samsung R&D has worked in collaboration with researchers from the University of Rome to fabricate a novel all solid state Lithium-sulfur battery.

The paper has been recently published in the Journal of The Electrochemical Society. (P.S. It’s Open Access! Read it here.)

The battery’s capacity is around 1,600 mAhg⁻¹, which denotes an initial charge-discharge Coulombic efficiency approaching 99 percent.

Additionally, the battery possesses such beneficial properties as the smooth stripping-deposition of lithium. In contrast to other Li-S cells, the new battery’s activation energy of the charge transfer process is much smaller.

(more…)

Electrochemistry Lights the Super Bowl

University of Phoenix Stadium

Site of Super Bowl XLIX

After the football teams and fans have left the stadium, after the television crews have wrapped up their interviews for the night, the stadium remains a-glow. This is the first time ever that a Super Bowl stadium has shone so brightly and with such an eye toward the environment.

According to takepart.com,

Sunday’s game between the New England Patriots and the Seattle Seahawks marks the first Super Bowl illuminated by LED lights, which boast an estimated 75 percent reduction in power and nearly double the glow of traditional metal halides—like the ones previously installed at the Phoenix, Arizona, stadium when it was built in 2006.

The stadium’s new set of 312 LED fixtures only need about 310,000 watts of power, compared with the 1.24 million watts of power required by the 780 metal halide bulbs.”

With this massive change over from traditional bulbs to LED lights, stadiums like the one in Phoenix and other around the country will have made significant strides toward green energy and hopefully LEED certification.

To learn more about LED lighting, check out our Digital Library.