The battle to produce the most efficient and environmentally friendly car rages on, and now a new company is rising in the ranks by proposing we power our cars with salt water.

The Quant e-Sportlimousine made its debut at the 2014 Geneva Motor Show and showcased its innovative NanoFlowcell technology. This new technology sets itself apart from other systems in its ability to store and release electrical energy at very high densities – all with the help of salt water.

This from Intelligent Living:

The flow cell system powering the Quant e-Sportlimousine’s four electric motors develops electricity from the electrochemical reaction created by two electrolyte solutions. This electricity is forwarded to super capacitors where it’s stored and distributed.

(more…)

Did You Get Our Postcard?

ECS Cancun e-postcard front ECS Cancun e-postcard backDidn’t get our postcard? (Click to see it big.) Don’t be hurt. We do want to see you in Cancun. Find out more about our fall meeting!

Posted in Meetings
Tagged

A Revolution in Renewable Energy

Towering like a beacon of hope in Germany’s North Sea stand wind turbines. Stretching as high as 60-story buildings and standing as far as 60 miles from the mainland, the turbines are part of Germany’s push to find a solution to global warming.

Some call it change. Some call it transformation. We call it a revolution.

According to an article in the The New York Times, it is expected that by the end of the year, scores of new turbines will be set in place – thus allowing low-emission electricity to be sent to German cities hundreds of miles south.

(more…)

23 Reasons You Should be in Cancun

Watch the video and hear at least 23 reasons for coming to the meeting! (Yes, I counted.)

Register now for the 2014 ECS and SMEQ (Sociedad Mexicana de Electroquímica) Joint International Meeting to be held October 5-9, 2014.

This major international conference offers a unique blend of electrochemical and solid-state science and technology; and serves as a major forum for the discussion of interdisciplinary research from around the world through a variety of formats, such as oral presentations (51 symposia and 2,299 papers being presented), poster sessions, exhibits, and tutorial sessions.

ECS is partnering with the Bill & Melinda Gates Foundation to host a multi-day workshop at the 2014 International Electrochemical Energy Summit (E2S) which takes place during the meeting. The workshop will culminate in the distribution of over $200,000 in seed funding from ECS, addressing critical technology gaps in water, sanitation, and hygiene challenges being faced around the world.

Find out more and register online now.

It’s at the beautiful, all-inclusive Moon Palace Resort Hotel, located on the best beach in Cancun and just minutes from the Cancun Airport.

Daily room rates include all of the following:

  • Unlimited meals, snacks, and beverages (including all alcoholic beverages), in twelve onsite restaurants featuring varied cuisine, including Italian, Asian, Mexican, Brazilian, and Continental;
  • Mini bar in room;
  • All gratuities (restaurants, lounges, poolside, bellmen, and housekeeping) and hospitality tax;
  • Water-sport facilities with non-motorized equipment such as sailboats, kayaks, and paddle boats at Moon Palace Marina;
  • Complimentary tennis, bicycling, miniature golf, and use of the health club;
  • Jacuzzi in every room; and
  • Wireless Internet access from your laptop!

Sign up now!

Posted in Uncategorized

A Light Show on Four Wheels

Because it does not require heat to produce light, EL is safe, efficient, and long lasting.Credit: Darkside Scientific

Because it does not require heat to produce light, EL is safe, efficient, and long lasting.
Credit: Darkside Scientific

Imagine being able to paint light on an object. With Darkside Scientific’s patented technology known as LumiLor, the company is now able to turn light into paint.

Recently, the company released a video of a car treated with LumiLor, which showcases the patented technology in all its luminescent glory.

The process is made possible through electroluminescent (EL) coating technologies, which is a characteristic of material that enables it to emit light in response to an electrical field.

The from Darkside Scientific:

At the sub-atomic level, the process behind electroluminescence is radiative recombination, also known as spontaneous emission. In radiative recombination, phosphorescent substances emit photons (light particles) in response to alternating electrical current.

Read the full article here.

For more information on electroluminescent technologies, check out the wealth of information on the topic in ECS’s Digital Library.

Climate Case for Open Access

This weekend I watched the recently released short film, Disruption, which is available online for free viewing. In less than one-hour, the scientists, authors and activists featured in the film highlight some truly frightening data and trends. As those who believe in the vast majority of the science already understand, we must do more to limit greenhouse gas emissions if we want any chance of keeping global temperature change below 2°C relative to pre-industrial levels.

Thankfully, the conversion to a clean energy economy is already feasible, both economically and technologically. Countries like Germany have been demonstrating the possibilities of renewable energy, despite having sunshine similar to that of Alaska. We also know the scientists of ECS are currently working on even more exciting research to improve our understanding and technological capabilities in photovoltaics, nanotechnology and fuel cells, among other cutting-edge fields.

In my view, the bold pledge to move toward open access at ECS has serious implications for action on climate change. If we can make the scientific research results and latest findings more widely accessible, we may speed up the scientific discovery process. Perhaps a young scientist in the developing world will unlock the key to some perplexing scientific dilemma, once we’ve made the latest findings more freely available in an ECS journal. Many of us believe we can accelerate the pace of innovation, and help solve critical challenges by opening access to scientific research. You can support those efforts by donating to the ECS Publications Endowment.

PeoplesClimate.orgIn the meantime, I plan to attend the Peoples Climate March on Sunday, September 21. There is an entire staging area for scientists, among the various  1,500 other groups, including students, environmentalists, labor unions, and community activists. Together, we’ll be demanding action on climate change, just two days before President Obama and other world leaders are set to attend a Climate Summit at the United Nations hosted by Secretary General Ban Ki-moon.

The National Institutes of Health is challenging science innovators to compete for prizes totaling up to $500,000, by developing new ways to track the health status of a single cell in complex tissue over time.

The National Institutes of Health is challenging science innovators to compete for prizes totaling up to $500,000, by developing new ways to track the health status of a single cell in complex tissue over time.

The National Institutes of Health (NIH) recently announced an exciting new challenge through the InnoCentive Platform that will award a total of $500,000 to creative minds that are interested in solving some of the world’s most important problems.

The Single Cell Analysis Program (SCAP) Challenge is aimed to spur the development of innovative solutions in single cell analysis. Through advances in cellular analysis, NIH hopes to develop tools that would monitor a cell in the process of becoming cancerous, detect changes due to disease-causing virus, or track how a cell responds to treatment.

The challenge’s goal is to generate creative ideas and methods for following and predicting a single cell’s behavior – in essence, allowing one to “Follow that Cell.”

This from the National Institutes of Health:

Many biological experiments are performed under the assumption that all cells of a particular “type” are identical. However, recent data suggest that individual cells within a single population may differ quite significantly and these differences can drive the health and function of the entire cell population. Single cell analysis comprises a broad field that covers advanced optical, electrochemical, mass spectrometry instrumentation, and sensor technology, as well as separation and sequencing techniques.

(more…)

Be recognized for your outstanding technical achievements in electrochemical and solid-state science and technology through our prestigious Honors and Awards.

Be recognized for your outstanding technical achievements in electrochemical and solid-state science and technology through our prestigious Honors and Awards.

Nomination deadlines are fast approaching for Society awards.

Carl Wagner Memorial Award of The Electrochemical Society
Deadline: October 1, 2014

The Carl Wagner Memorial Award was established in 1980 to recognize a mid-career achievement and excellence in research areas of interest of the Society, and significant contributions in the teaching or guidance of students or colleagues in education, industry, or government. The award commemorates Carl Wagner, a man of outstanding scientific achievement with important contributions in all areas of the Society’s interest, the Society’s first Palladium Award winner, and a dedicated teacher.

The Award Recipient shall have made significant achievements in research in areas of interest to the Society. The Recipient shall have contributed strongly to the guidance and development of students or associates in education, industry, or government. The Recipient shall have attained a level of professional achievement that, in the judgment of the Carl Wagner Award Subcommittee, justifies the objective of recognizing mid-career achievement. The research and teaching or guidance being recognized shall have encompassed interdisciplinary breadth.

The recipient does not need to be a member of The Electrochemical Society. There shall be no restrictions or reservations regarding sex, race, citizenship, or place of origin or residence. The award shall consist of an appropriately worded scroll, sterling medal, complimentary meeting registration for award recipient and companion, a dinner held in recipient’s honor during the designated meeting, and Life Membership in The Society.

Nominate a colleague here by October 1, 2014

Here’s a great paper talking about Carl Wagner’s (among others) contributions to the sciences.

Find out more about our awards program.

First Graphene-Based Flexible Display Produced

"This is a significant step forward to enable fully wearable and flexible devices ." -Andrea Ferrari, Director of the Cambridge Graphene Centre

“This is a significant step forward to enable fully wearable and flexible devices .”
-Andrea Ferrari, Director of the Cambridge Graphene Centre

There has been quite the buzz around graphene lately. With this material being among the strongest and most lightweight known, it has the potential to revolutionize industries from healthcare to electronics. And revolutionize is exactly what the Cambridge Graphene Centre (CGC) and Plastic Logic have set out to do.

With the CGC’s graphene expertise and Plastic Logic’s already developed technology for flexible electronics, the two came together to demonstrate the first graphene-based flexible display.

This from University of Cambridge:

The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

(more…)

The researchers discovered that two flat semiconductor materials can be connected edge-to-edge with crystalline perfection.Credit: University of Washington

The researchers discovered that two flat semiconductor materials can be connected edge-to-edge with crystalline perfection.
Credit: University of Washington

Current member of ECS, Xiaodong Xu, has made a huge contribution to the field of electrochemical science with the creation of atomically seamless, thinnest-possible semiconductor junctions.

Xu, along with the scientists at the University of Washington, believe their semiconductor – coming in at only three atoms thick – is the most slender possible, a new class of nanoscale materials.

This from the University of Washington:

The University of Washington researchers have demonstrated that two of these single-layer semiconductor materials can be connected in an atomically seamless fashion known as a heterojunction. This result could be the basis for next-generation flexible and transparent computing, better light-emitting diodes, or LEDs, and solar technologies.

Read the full article here.

“Our experimental demonstration of such junctions between two-dimensional materials should enable new kinds of transistors, LEDs, nanolasers, and solar cells to be developed for highly integrated electronic and optical circuits within a single atomic plane,” Xu said.

The research was published online this week in Nature Materials.

Find more research from Xu published in our Digital Library.