Q&A series with ECS OpenCon 2017 speakers

Daniel Schwartz

Dan Schwartz, Boeing-Sutter Professor and director of the Clean Energy Institute at the University of Washington

ECS will be hosting its first ever OpenCon event on October 1 in National Harbor, MD. OpenCon will be ECS’s first, large community event aimed at creating a culture of change in how research is designed, shared, discussed, and disseminated, with the ultimate goal of making scientific progress faster.

During ECS’s Open Con, Dan Schwartz, director of the Clean Energy Institute at the University of Washington, will give a talk on the open science movement and academia. In addition to speaking at OpenCon, Schwartz will also co-organize the ECS Data Sciences Hack Day.

The following conversation is part of a series with speakers from the upcoming ECS OpenCon. Read the rest of the series.

ECS: When we say “data sciences,” what does this encompass?

Dan Schwartz: “Data science” is shorthand for the scientific and engineering principles that underpin efficient creation, visualization, analysis, and sharing of data. I have a conjecture—unevaluated but euphemistically called “Schwartz’s law” around here—that every PhD I graduate produce more data than the sum of all prior PhDs. Basically, each year cameras and detectors have deeper bit depth, equipment and software get more automated, more of the software tools allow data and simulation to be animated, etc. In short, both experimentalists and simulation people are seeing huge growth in data they need to analyze, visualize, and share with collaborators.

ECS: Specifically, what areas of electrochemistry and/or solid state science can most benefit from the various components of data sciences, such as open data, open source software and cloud-based computing tools, etc.?

DS: I believe we can accelerate progress and improve reproducibility of all ECS science and technology through open data, open software, and access to shared computational resources. A critical part of this is building the ECS community that establishes standards for data repositories, creates, peer evaluates, and improves software tools.

(more…)

Safer Batteries with Nanodiamonds

BatterySafety concerns regarding lithium-ion batteries have been making headlines in light of smartphone fires and hoverboard explosions. In order to combat safety issues, at team of researchers from Drexel University, led by ECS member Yury Gogotsi, has developed a way to transform a battery’s electrolyte solution into a safeguard against the chemical process that leads to battery fires.

Dendrites – or battery buildups caused by the chemical reactions inside the battery – have been cited as one of the main causes of lithium-ion battery malfunction. As more dendrites compile over time, they can breach the battery’s separator, resulting in malfunction.

(MORE: Read more research by Gogotsi in the ECS Digital Library.)

As part of their solution to this problem, the research team is using nanodiamonds to curtail the electrochemical deposition that leads to the short-circuiting of lithium-ion batteries. To put it in perspective, nanodiamond particles are roughly 10,000 times smaller than the diameter of a single hair.

(more…)

Renewable grideThe U.S. Department of Energy (DOE) released a report Wednesday night on electricity markets and grid reliability, stating that the decline in coal and nuclear production has not impacted grid reliability, instead the rise in a diverse energy portfolio has increased the grid’s stability.

The study, commissioned by Energy Secretary Rick Perry in April, also states that coal plant closures across the country have been due to market pressure and competition from low-priced natural gas plants, not policy changes that support renewables such as wind and solar.

(MORE: Listen to our interview with former U.S. Energy Secretary and Nobel Laureate Steven Chu.)

“America is also fortunate to have a variety of fuel sources. We need to consider how to use each effectively while recognizing our differences and unique state and regional circumstances,” Perry says in the report’s cover letter. “We must utilize the most effective combination of energy sources with an ‘all of the above’ approach to achieve long-term, reliable American energy security.”

While the report does not state that there is a current concern with grid reliability, it does warn that future problems could arise if coal and nuclear plants continue to close at the current rate. Many environmental advocates cite this as a last-ditch effort for these companies to remain relevant in the energy landscape. However, the report does go on to highlight the role of renewables in developing a diverse energy infrastructure.

(more…)

A debate held at the annual Charleston Library Conference tackles the journal impact factor, with speakers looking at the metric and analyzing if it does more harm than good. The debate was moderated by Rick Anderson, Associate Dean for Collections & Scholarly Communication; and argued by Sara Rouhi, director of business development at Altmetric; and Ann Beynonn, manager at Clarivate Analytics.

A journal’s impact factor is a long-established metric intended to evaluate the relevancy of a publication by factoring the average number of times its articles were cited over the course of the prior two years. However, the metric does not reflect journals that continue to have impact long after the two year time-span.

Opening polls of the debate showed that 54 percent of all respondents believed that the impact factor does more harm than good. By the end of the debate, that number had grown to 57 percent. However, because the debate garnered a small number of attendees, the vote does not represent a true statistical significance.

Read full transcripts here.

New paper-based, point-of-care diagnostic tools could lead to improvements in device cost, weight, and flexibility. The recently developed SPEDs, or self-powered, paper-based electrochemical device, can detect biomarkers such as glucose and white blood cells, all while remaining easy to read for non-experts.

The Purdue University research team behind this project believes it could be applicable for patients in regions where access to sophisticated medical equipment is limited.

“You could consider this a portable laboratory that is just completely made out of paper, is inexpensive and can be disposed of through incineration,” says Ramses V. Martinez, an assistant professor of industrial and biomedical engineering at Purdue University. “We hope these devices will serve untrained people located in remote villages or military bases to test for a variety of diseases without requiring any source of electricity, clean water, or additional equipment.”

BiofuelResearchers have created a new method to more efficiently convert potato waste into ethanol. The findings may lead to reduced production costs for biofuel in the future and add extra value for chip makers.

Using potato mash made from the peelings and potato residuals from a Pennsylvania food-processing company, researchers triggered simultaneous saccharification—the process of breaking down the complex carbohydrate starch into simple sugars—and fermentation—the process in which sugars are converted to ethanol by yeasts or other microorganisms in bioreactors.

The simultaneous nature of the process was innovative, according to researcher Ali Demirci, professor of agricultural and biological engineering at Penn State. The addition to the bioreactor of mold and yeast—Aspergillus niger and Saccharomyces cerevisiae, respectively—catalyzed the conversion of potato waste to bioethanol.

The bioreactor had plastic composite supports to encourage and enhance biofilm formation and to increase the microbial population. Biofilms are a natural way of immobilizing microbial cells on a solid support material. In a biofilm environment, microbial cells are abundant and more resistant to environmental stress causing higher productivities.

(more…)

Juan Pablo EsquivelIn its first Science for Solving Society’s Problems Challenge, ECS partnered with the Bill & Melinda Gates Foundation to leverage the brainpower of electrochemists and solid state scientists, working to find innovative research solutions to some of the world’s most pressing issues in water and sanitation. A total of seven projects were selected, resulting in a grand total of $360,000 in funding.

The researchers behind one of those projects recently published an open access paper in the Journal of The Electrochemical Society discussing their results in pursuing a single-use, biodegradable and sustainable battery that minimizes waste. The paper, “Evaluation of Redox Chemistries for Single-Use Biodegradable Capillary Flow Batteries,” was published August 18 and authored by Omar Ibrahim, Perla Alday, Neus Sabaté, Juan Pablo Esquivel (pictured with prototype at right), and Erik Kjeang.

(more…)

Carbon dioxideWhile pursing work on the highly desirable but technically challenging lithium-air battery, researchers unexpectedly discovered a new way to capture and store carbon dioxide. Upon creating a design for a lithium-CO2 battery, the research team found a way to isolate solid carbon dust from gaseous carbon dioxide, all while being able to separate oxygen.

As global industry, technology, and transportation grows, the consumption of fossil fuels has increased. According to the U.S. Environmental Protection Agency, the burning of petroleum-based products has resulted in 6,587 million of metric tons of carbon dioxide released into the environment in 2015. The emission of greenhouse gasses like carbon dioxide trap heat in the atmosphere, which researches have linked the global warming. Because of this, capturing and converting carbon emissions has become a highly researched area.

“The problem with most physical and chemical pathways for CO2 fixation is that their products are gases and liquids that need to be further liquefied or compressed, and that inevitably leads to additional energy consumption and even more CO2 emissions,” says Haoshen Zhou, senior author of the recently published research. “Instead, we are demonstrating an electrochemical strategy for CO2 fixation that yields solid carbon products, as well as a lithium-CO2 battery that can provide the energy necessary for that process.”

(more…)

By: Timothy H. Dixon, University of South Florida

Climate marchThis summer I worked on the Greenland ice sheet, part of a scientific experiment to study surface melting and its contribution to Greenland’s accelerating ice losses. By virtue of its size, elevation and currently frozen state, Greenland has the potential to cause large and rapid increases to sea level as it melts.

When I returned, a nonscientist friend asked me what the research showed about future sea level rise. He was disappointed that I couldn’t say anything definite, since it will take several years to analyze the data. This kind of time lag is common in science, but it can make communicating the issues difficult. That’s especially true for climate change, where decades of data collection may be required to see trends.

A recent draft report on climate change by federal scientists exploits data captured over many decades to assess recent changes, and warns of a dire future if we don’t change our ways. Yet few countries are aggressively reducing their emissions in a way scientists say are needed to avoid the dangers of climate change.

While this lack of progress dismays people, it’s actually understandable. Human beings have evolved to focus on immediate threats. We have a tough time dealing with risks that have time lags of decades or even centuries. As a geoscientist, I’m used to thinking on much longer time scales, but I recognize that most people are not. I see several kinds of time lags associated with climate change debates. It’s important to understand these time lags and how they interact if we hope to make progress.

(more…)

Lithium-ionResearchers have found a new method for finding lithium, used in the lithium-ion batteries that power modern electronics, in supervolcanic lake deposits.

While most of the lithium used to make batteries comes from Australia and Chile, but scientists say there are large deposits in sources right here in America: supervolcanoes.

In a recently published study, scientists detail a new method for locating lithium in supervolcanic lake deposits.

The findings represent an important step toward diversifying the supply of this valuable silvery-white metal, since lithium is an energy-critical strategic resource, says study coauthor Gail Mahood, a professor of geological sciences at Stanford University’s School of Earth, Energy & Environmental Sciences.

(more…)