BatteryWhen a battery is used, electrically charged ions travel between electrodes, causing those electrodes to shrink and swell. For some time, researchers have wondered why the electrode materials – which are fairly brittle – don’t crack in the expansion and contraction styles.

Now, a team of researchers from MIT, led by ECS member Yet-Ming Chiang, may have found the answer to this mystery.

This from MIT:

While the electrode materials are normally crystalline, with all their atoms neatly arranged in a regular, repetitive array, when they undergo the charging or discharging process, they are transformed into a disordered, glass-like phase that can accommodate the strain of the dimensional changes.

(more…)

An interview with Isamu Akasaki

Isamu AkasakiOn June 8, 2016, Yue Kuo, an ECS fellow and vice president of The Electrochemical Society, traveled to the Akasaki Institute at Nagoya University in Japan to talk with Isamu Akasaki, a Nobel Prize winner and ECS life member.

Professor Akasaki is a materials scientist specializing in semiconductor science and technology. He is a pioneer of efficient blue light-emitting diodes which have enabled bright and energy-saving white light sources. He shares the 2014 Nobel Prize in Physics with Hiroshi Amano and Shuji Nakamura for this work. Prior to their groundbreaking work, scientists had produced LEDs that emitted red or yellow-green light, but not blue. Blue had been thought impossible or impractical to make. Blue LEDs became commercially available in 1994.

The new combination of blue, green, and red LEDs produces white light, and blue LEDs coated with YAG:Ce yellow phosphor appear white to the eye and can be developed for much less energy than that from incandescent and fluorescent lamps, which contain toxic mercury. Prof. Akasaki’s work helped lead to the development of blue semiconductor lasers, which proved useful for high-capacity optical-media devices such as Blu-ray disc players.

What follows is an edited transcript of the conversation between Yue Kuo and Isamu Akasaki, which they had in English.

(more…)

By: Roque Calvo, ECS Executive Director

ECS at 115In April 1902, upon the conclusion of the Society’s first meeting in Philadelphia, the Society’s first president wrote the column below, which was printed in the Society’s first publication, explaining the rationale to form the American Electrochemical Society.

Evidence accumulates on every hand that the analogue of the specialist in science is the society which specializes. Whether for good or ill, whether some of its influences are narrowing in some directions or not, the society which specializes is the necessary corollary of the scientific specialist; the latter came perforce into existence, has made the whole world his debtor, and is recognized as the present factor for progress; the former is coming perforce into existence, will soon make the world its immeasurable debtor, and will be a wonderfully potent factor in future scientific progress.

Such is the force, the necessary condition, which has brought into existence The American Electrochemical Society. … Its functions should be those of bringing electrochemists into personal contact with each other; of disseminating among them all the information known to, and which can be spared by, their co-workers; to stimulate original thought in these lines by
mutual interchange of experience, and by papers and discussions; to stimulate electrochemical work all over the world. …

Such a society … being, therefore, a necessity, a pressing need, its formation was inevitable. It came. … The results have justified the insight of the projectors of the society, the first meeting has been an enthusiastic success, the organization now exists, its future is one of assured usefulness. With confidence we stand out to sea.

(more…)

Posted in Announcements
Tagged ,

By: Jens Blotevogel, Colorado State University

Solar fieldWithout knowing it, most Americans rely every day on a class of chemicals called per- and polyfluoroalkyl substances, or PFASs. These man-made materials have unique qualities that make them extremely useful. They repel both water and grease, so they are found in food packaging, waterproof fabric, carpets and wall paint. The Conversation

PFASs are also handy when things get heated. Consumers value this property in nonstick frying pans. Government agencies and industry have used them for decades to extinguish fires at airports and fuel storage facilities.

However, widespread use of PFASs has led to extensive contamination of public water systems. Today, these substances can be found in the blood serum of almost all U.S. residents. Exposure to PFASs has been linked to kidney and testicular cancer, as well as developmental, immune, hormonal and other health issues.

But removing them from the environment is not easy. Chemical bonds between fluorine and carbon – the backbone of PFAS molecules – are extremely strong. PFASs can be removed from water by filtering them out, but the used filters have to be disposed of afterwards, and landfilling only transfers the problem to another location. The best solution to the problem is to break down PFASs completely – and on that score, we’re making progress.

(more…)

Tagged ,

Student Volunteers Wanted!

ECS Student MembersVolunteer for six hours at the 231st ECS Meeting and receive a FREE meeting registration!

As a student volunteer, you will work closely with the ECS staff and gain first-hand experience in what it takes to execute an ECS biannual meeting.

Take advantage of the opportunity to network and engage with meeting attendees, symposium organizers, and ECS staff while learning how registration operates, technical sessions run, and how major meeting programs are facilitated. In addition to hands-on experience, volunteers will also receive a meeting t-shirt, a complimentary ticket to the student mixer and a certificate of participation.

Multilingual speakers are highly encouraged to apply!

Deadline for application submissions: Friday, April 21
Candidates notified: Tuesday, April 25

SUBMIT YOUR APPLICATION

NOTE: If you do not complete the six hours of work on-site, you will be invoiced for the full registration fee. We will do our best to accommodate the hours you have listed as being available but this is not a guarantee. Each volunteer position will require interaction with the attendees, long periods of standing, and foot-traffic flow management. If you are unwilling or unable to complete these tasks please make us aware upon submitting your application.

Perspective articlesSince 1902, ECS has been at the forefront of publishing electrochemical and solid state science and technology research. For the past 115 years, the Society has been publishing high quality, peer-reviewed journals that contain the work of renowned scientists, engineers, investors, and Nobel laureates. Now, ECS is providing researchers a new avenue to offer insights into emerging or established fields: Perspective articles.

“The Perspective article was established to facilitate new research and research directions by bringing new interpretations or thoughts of experts on a specific topic within the fields of interest of the ECS community,” says Robert Savinell, editor of the Journal of The Electrochemical Society (JES).

Perspective articles differ from traditional research articles published in ECS journals. Instead of focusing on presenting new findings and data, Perspective articles aim to tap into the expertise of researchers, giving them a platform to present thoughts on their respective field and offer new insight or trends. The new article type will allow authors to reach a broader audience and spark discussion in the scientific community.

ECS recently published its first Perspective article in JES, “Localized Corrosion: Passive Film Breakdown vs Pit Growth,” where corrosion experts Gerald Frankel, Tianshu Li, and John Scully discuss the modern debates in localized corrosion and share their outlook on the field.

(more…)

SolarA newly created material may have the capacity to double the efficiency of solar cells.

Conventional solar cells are at most one-third efficient, a limit known to scientists as the Shockley-Queisser Limit. The new material, a crystalline structure that contains both inorganic materials (iodine and lead) and an organic material (methyl-ammonium), boosts the efficiency so that it can carry two-thirds of the energy from light without losing as much energy to heat.

In less technical terms, this material could double the amount of electricity produced without a significant cost increase, according to the new study in Science.

Enough solar energy reaches the earth to supply all of the planet’s energy needs multiple times over, but capturing that energy has been difficult—as of 2013, only about 1 percent of the world’s grid electricity was produced from solar panels.

The new material, called a hybrid perovskite, would create solar cells thinner than conventional silicon solar cells, and is also flexible, cheap, and easy to make, says Libai Huang, assistant professor of chemistry at Purdue University.

(more…)

BatteryA new mathematical model may help researchers design new materials for use in high-power batteries. According to the research team, the model could benefit chemists and materials scientists who typically rely on a trial and error method when developing new materials for batteries and capacitors.

“The potential here is that you could build batteries that last much longer and make them much smaller,” says Daniel Tartakovsky, co-author of the study. “If you could engineer a material with a far superior storage capacity than what we have today, then you could dramatically improve the performance of batteries.”

Demand for affordable, efficient energy storage continues to increase as more entities transition toward renewable energy. While there are many researchers working in the area of energy storage, the team behind this development is looking at the field in a new light.

(more…)

A team of researchers from the University of Michigan has developed a self-healing, water-repellant coating that is hundreds of times more durable than its counterparts.

The researchers believe this development could help enable waterproof vehicles, clothing, rooftops, and other surfaces – something that current hydrophobic coatings struggle with due to their fragility.

“Thousands of superhydrophobic surfaces have been looked at over the past 20 or 30 years, but nobody has been able to figure out how to systematically design one that’s durable,” says Anish Tuteja, co-author of the study. “I think that’s what we’ve really accomplished here, and it’s going to open the door for other researchers to create cheaper, perhaps even better superhydrophobic coatings.”

(more…)

Water purificationAccess to adequate water and sanitation is a major obstacle that impacts nations across the globe. Currently 1 in 10 people – or 663 million – lack access to safe water. Due to the global water crisis, more than 1.5 billion people are affected by water-related diseases every year. However, many of those disease causing organisms could be removed from water with hydrogen peroxide, but production and distribution of hydrogen peroxide is a challenge in many parts of the world that struggle with this crisis.

Now, a team of researchers from the U.S. Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have develop a small device that can produce hydrogen peroxide with a little help from renewable energy sources (i.e. conventional solar panels).

“The idea is to develop an electrochemical cell that generates hydrogen peroxide from oxygen and water on site, and then use that hydrogen peroxide in groundwater to oxidize organic contaminants that are harmful for humans to ingest,” says Chris Hahn, a SLAC scientist.

(more…)