Solar-powered Water Purifier

Water purificationIn an effort to purify water, researchers from the University at Buffalo are using carbon-dipped paper to make dirty water drinkable.

Those behind the research believe this new development could be a cheap and efficient way to address a global shortage in drinking water, specifically in developing areas.

(MORE: See what ECS members are doing to address global water and sanitation issues.)

“Using extremely low-cost materials, we have been able to create a system that makes near maximum use of the solar energy during evaporation,” says Qiaoqiang Gan, lead researcher. “At the same time, we are minimizing the amount of heat loss during this process.”

This from University at Buffalo:

The team built a small-scale solar still. The device, which they call a “solar vapor generator,” cleans or desalinates water by using the heat converted from sunlight. Here’s how it works: The sun evaporates the water. During this process, salt, bacteria, or other unwanted elements are left behind as the liquid moves into a gaseous state. The water vapor then cools and returns to a liquid state, where it is collected in a separate container without the salt or contaminants.

(more…)

Plastic treeNew technology that mimics the branches and leaves of a cottonwood tree can generate electricity with the help of the wind.

Researchers say that the new technology is not meant to be a replacement for wind turbines, but could offer an alternative electricity source for those looking for small, unobtrusive machines to transform wind into energy.

“The possible advantages here are aesthetics and its smaller scale, which may allow off-grid energy harvesting,” says Michael McCloskey, co-author of the study. “We set out to answer the question of whether you can get useful amounts of electrical power out of something that looks like a plant. The answer is ‘possibly,’ but the idea will require further development.”

On top of efficiency and affordability, consumers are also looking for alternative energy technologies to be aesthetically attractive, as demonstrated in Tesla’s solar roof.

According to McCloskey, cell phone towers in urban locations are sometimes camouflaged as trees to offer better aesthetic properties. The researchers believe that towers such as this, which already host fake leaves, could be greatly improved by implementing this technology to tap energy from the leaves and provide further functionality.

(more…)

By: William Messner, Tufts University

Driverless carWhen a May 2016 crash killed the person operating a Tesla Model S driving in Autopilot mode, advocates of autonomous vehicles feared a slowdown in development of self-driving cars.

Instead the opposite has occurred. In August, Ford publicly committed to field self-driving cars by 2021. In September, Uber began picking up passengers with self-driving cars in Pittsburgh, albeit with safety drivers ready to take over.

October saw Tesla itself undeterred by the fatality. The company began producing cars it said had all the hardware needed for autonomous operation; the software will be written and added later. In December, days after Michigan established regulations for testing autonomous vehicles in December, General Motors started doing just that with self-driving Chevy Bolts. And just one day before the end of his term, U.S. Secretary of Transportation Anthony Foxx designated 10 research centers as official test sites for automated vehicle systems.

Three of the most significant developments in the industry happened earlier this month. The 2017 Consumer Electronics Show (CES) in Las Vegas and the North American International Auto Show in Detroit saw automakers new and old (and their suppliers) show off their plans and innovations in this arena. And the National Transportation Safety Board (NTSB) issued its report on the Tesla fatality. Together, they suggest a future filled with driverless cars that are both safer than today’s vehicles and radically different in appearance and comfort.

(more…)

By using one of the world’s most powerful electron microscopes, a team of researchers from Lawrence Berkeley National Laboratory has successfully mapped the exact location and chemical type of 23,000 atoms in a nanoparticle made of iron and platinum. The team believes this work could reveal more information about material properties at the single-atom level, opening the doors to improving magnetic performance for next-generation hard drives.

“Our research is a big step in this direction. We can now take a snapshot that shows the positions of all the atoms in a nanoparticle at a specific point in its growth,” says Mary Scott, who conducted the research. “This will help us learn how nanoparticles grow atom by atom, and it sets the stage for a materials-design approach starting from the smallest building blocks.”

(more…)

ToyotaThe ECS Toyota Young Investigator Fellowship kicked off in 2014, establishing a partnership between The Electrochemical Society and Toyota Research Institute of North America, aimed at funding young scholars pursuing innovative research in green energy technology.

The proposal deadline for the year’s fellowship is Jan. 31, 2017. Apply now!

While you put together your proposals, check out what Patrick Cappillino, one of the fellowship’s inaugural winners, says about his experience with the fellowship and the opportunities it presented.


The Electrochemical Society: Your proposed topic for the ECS Young Investigator Toyota Fellowship was “Mushroom-derived Natural Products as Flow Battery Electrolytes.” What inspired that work?

Patrick Cappillino: This research was inspired by a conversation with a colleague. I was relating the problem of redox instability in flow battery electrolytes. He told me his doctoral work had focused on an interesting molecule called Amavadin, produced by mushrooms, that was extremely stable and easy to make. The lightbulb really went off when we noticed that the starting material was the decomposition product of another flow battery electrolyte that has problems with instability.

(more…)

VisaThe American Association for the Advancement of Science (AAAS) is calling on U.S. President Donald Trump to work with the world’s largest scientific organization to ensure the free flow of scientific talent from around the world.

The latest response from AAAS comes just after President Trump’s executive order limiting immigration and travel from seven countries in the Middle East. AAAS’s CEO, Rush Holt, issued a statement emphasizing the need to keep U.S. borders open to scientists and students from around the world.

“Scientific progress depends on openness, transparency, and the free flow of ideas. The United States has always attracted and benefited from international scientific talent because of these principles,” Holt said in the release. “We know that fostering safe and responsible conduct of research is essential for scientific advancement, national prosperity, and international security. Therefore, the detaining of students and scientists that have already been screened, processed, and approved to receive a visa to visit the United States is contrary to the spirit of science to pursue scholarly and professional interests. In order for science and the economy to prosper, students and scientists must be free to study and work with colleagues in other countries.”

(more…)

LI-SM3ECS is sponsoring the Lithium Sulfur Batteries: Mechanisms, Modelling and Materials (Li-SM3) 2017 Conference, taking place April 26-27 in London.

This year marks the second Li-SM3 conference, which will bring together top academics, scientists, and engineers from around the world to discuss lithium sulfur rechargeable batteries, among other related topics.

The conference will include four keynote speakers, including ECS member Ratnakumar Bugga, who will deliver a talk entitled “High Energy Density Lithium-Sulfur Batteries for NASA and DoD Applications.” Learn more about the speakers in the conference agenda.

There’s still time to submit a poster abstract. Deadline for posters is March 3.

Register for Li-SM3 today!

The Search for a Super Battery

From electric vehicles to grid storage for renewables, batteries are key components in many of tomorrow’s innovations. But current commercialized batteries face problems of price, efficiency, safety, and life-cycle. The television series, NOVA, is exploring many of those issues in the upcoming episode, “Search for the Super Battery.”

A preview of the episode by CBS News explores two innovators who are working toward the next big thing in battery technology.

(more…)

ImmigrationMore than 12,000 academics, including 40 Nobel laureates, have added their names to an online petition condemning U.S. President Donald Trump’s recent executive order that institutes “extreme vetting” of refugees and limits immigration from Iran, Iraq, Libya, Somalia, Sudan, Syria, and Yemen into the U.S.

The petition cites the executive order as “needlessly cruel” and “discriminatory,” further stating that it could negatively damage scientific research in the U.S. and hurt the country’s reputation for academic excellence.

(more…)

Nuclear energyA joint research effort from Rice University and Kazan Federal University is demonstrating a new way to pull radioactive elements out of contaminated water. The researchers behind this study believe their results could go a long way in purifying the hundreds of millions of gallons of water that were contaminated after the Fukushima nuclear plant accident.

(MORE: Listen to the ECS Podcast with Way Kuo, nuclear energy expert and Fukushima consultant.)

This from Rice University:

They reported that their oxidatively modified carbon (OMC) material is inexpensive and highly efficient at absorbing radioactive metal cations, including cesium and strontium, toxic elements released into the environment when the Fukushima plant melted down after an earthquake and tsunami in March 2011.

(more…)