Sensor Division Awards

Sensor DivisionECS recognizes outstanding technical achievements in electrochemistry and solid-state science and technology through its Honors & Awards program. There are many deserving members of the Sensor Division among us and this is an opportunity to highlight their contributions.

We are currently accepting nominations for the Sensor Division Outstanding Achievement Award which was established in 1989 to recognize outstanding achievement in research and/or technical contributions to the field of sensors and to encourage work excellence in the field. The award consists of a scroll, and a $1,000 prize. The recipient is required to attend the Society meeting at which the award is given and present a lecture on topics for which the award is made and may receive (if required) some financial assistance to facilitate attendance.

Nomination Deadline: March 1, 2016

Please review the full award criteria before completing the application.

We encourage you to submit a nomination and acknowledge the hard work of your peers!

Clean Energy from Water

For most of history, fuel cells existed only as laboratory curiosities. As far back as 1839, the English scientist William Grove had the idea that the reactants of a battery could be gases fed into it from external tanks.

Since their humble beginnings, fuel cells have come a far to prove as a viable alternative to combustion. Currently, researchers at the University of Basel are studying how sunlight could split water into hydrogen and oxygen, creating a fuel cell that could produce clean energy from water.

(MORE: Read “Battery and Fuel Cell Technology.”)

Artificial photosynthesis has proven to be one of the most promising tools in producing clean, renewable resources. This process occurs when water is photo-electrochemically, with the aid of sunlight, separated into its H2 and O2 components.

Of the two reactions that occur, water oxidation typically provides researchers with the most hurdles to overcome. The new research works to develop an efficient, sustainable water oxidation catalyst.

(more…)

Sensor-1

Metasensor’s Sensor-1 is a personal security system for your portable goods.

Home security systems are great for protecting valuables inside your home and stopping attempted burglaries, but those systems aren’t very practical when you travel with your precious, portable property.

Metasensor has developed its new Sensor-1, which acts as a portable security system – changing the way we protect our belongings and track objects in general.

This from Popular Science:

Sensor-1 is a small, octagonal disk that contains an accelerometer, a gyroscopic stabilizer, and a magnetometer, which work together to track the orientation of the device it’s attached to in three dimensions. They alert Sensor-1 if the object has been moved, and how. It also has three LED lights, a small siren, and Bluetooth connectivity.

(more…)

Tagged

229th ECS Meeting, San DiegoThis May, join industry leaders like, Bio-Logic, Metrohm USA and more as an exhibitor at the 229th ECS Meeting in San Diego, CA. ECS meetings are a great place to network and meet customers—old and new.

The meeting will be held from May 29 – June 2 at the Hilton Bayfront and the San Diego Convention Center is expected to attract approximately 2,000 attendees. As an exhibitor, you will have the unique opportunity to present your services and products to these key constituents from industry, government and academia.

Exhibit space is filling up quickly!

As always, exhibit booths and sponsorship options will be allotted on a first come, first served basis. As the exhibit lineup continues to grow we highly recommend you lock in your exhibit location and sponsorship options now. To reserve a booth, or browse our sponsorship options, please complete pages 11-12 of our online exhibit and sponsorship brochure and return them by no later than Friday, March 11.

If you have any questions, please contact Casey Emilius, Meetings Coordinator, via email or phone (609) 737-1902 x 126.

As always, thank you for your support and we look forward to working with you in San Diego!

Posted in Meetings

Morocco has officially opened the Noor I power plan — a massive solar power plant in the Sahara Desert that is poised to provide renewable energy to more than one million Moroccans.

Projects show the Noor I power plants with the capability of generating up to 160 megawatts of power. Thousands of solar panels cover an expansive piece of the desert, making it one of the world’s biggest solar thermal power plants.

But Morocco is well on the way to developing the single largest solar power production facility in the world, with Noor II and Noor III already underway.

This from NPR:

Morocco currently relies on imported sources for 97 percent of its energy consumption, according to the World Bank, which helped fund the Noor power plant project. Investing in renewable energy will make Morocco less reliant on those imports as well as reduce the nation’s long-term carbon emissions by millions of tons.

Read the full article.

Because of the climate in the Sahara Desert, the systems will work by capturing the sun’s energy as heat and converting water into steam, thus turning the turbines.

This differs from a traditional photovoltaic system, where the thermal system carries the ability to function without direct sunlight. Additionally, energy storage technologies are not necessary for evening use.

Water power generation

Sweden, a world leader in clean energy solutions, is make new innovations in harnessing the energy of wave power.

In an effort to combat the detrimental effects of climate change, countries around the world are looking for the next big thing in energy. In Sweden, part of that answer may be in buoys drifting in the ocean.

For the first time, Wave Energy Converters the Sotenäs Wave Power Plant on the Swedish West Coast is generating electricity and transporting it to the Swedish grid through buoys.

This from Seabased:

The connection of the six meter diameter buoys to the corresponding linear generator Wave Energy Converters on the seabed represents the final step in bringing each unit on line, together making up a system establishing many World firsts, including the world’s first multiple unit wave power plant and the world’s first subsea generator switchgear.

Read the full article.

Currently, Sweden is one of the global leader in clean energy solutions. Since the country’s oil crisis in the 1970s, the country has transitioned from an energy infrastructure from 70 percent dependency on oil to just a 20 percent dependency.

“This is a very significant achievement,” said Mats Leijon, CEO of Seabased. “We are very happy to have come this far and I wish to thank Fortum and the Swedish Energy Agency for their confidence and support all throughout this, sometimes tough, journey.”

Battery technology for water desalination

Inspired by the principles of the sodium ion battery, Kyle Smith (right) is re-appropriating technology to make huge strides in water desalination.
Image: L. Brian Stauffer

Battery applications range from powering electronic devices to storing energy harvested from renewable sources, but batteries have a range of applications beyond the obvious. Now, researchers from the University of Illinois at Urbana-Champaign are taking existing battery technology and applying it to efforts in water desalination.

The researchers have published the open access article in the Journal of The Electrochemical Society.

“We are developing a device that will use the materials in batteries to take salt out of water with the smallest amount of energy that we can,” said Kyle Smith, ECS member and assistant professor at the University of Illinois at Urbana-Champaign. “One thing I’m excited about is that by publishing this paper, we’re introducing a new type of device to the battery community and to the desalination community.”

Water desalination technologies have flourished as water needs have grown globally. This could be linked to growing populations or drought. However, because of technical hurdles, wide-spread implementation of these technologies has been difficult. However, the new technologies developed could combat that issue by using electricity to draw charged salt ions out of the water.

(more…)

JES Seeks Technical Editor

ECS is seeking to fill the position of technical editor of the electrochemical engineering topical interest area for the Journal of The Electrochemical Society.

Wanted: JES EditorThe topical interest area includes industrial electrochemistry, the mathematical modeling of electrochemical reactors and devices, electrochemical machining, and the electrochemical synthesis of compounds. Specific topics include: kinetics, selectivity, and yields; mass, momentum, and heat transport; and electrode designs and evaluation.

Self-nominations and third-party nominations are due no later than February 5, 2016.

Full applications are due no later than February 12, 2016.

Learn more!

Please share with anyone you feel would be a good candidate.

Submit your PRiME 2016 Abstract!

PRiME_2016_blog_banner_940x120

Make sure to mark your calendars for PRiME 2016, the Joint International Meeting of The Electrochemical Society (ECS), The Electrochemical Society of Japan (JECS), and The Korean Electrochemical Society (KECS).

With over 50 technical symposia taking place from October 2-7, 2016 in Honolulu, HI at the Hawaii Convention Center and the Hilton Hawaiian Village, this will be one of the largest ever conferences devoted solely to electrochemistry and solid-state science. PRiME 2016 will also feature the technical co-sponsorship of The Chinese Society of Electrochemistry, The Electrochemistry Division of the Royal Australian Chemical Institute, The Japan Society of Applied Physics, The Korean Physical Society Semiconductor Division, and The Chinese Physical Society Semiconductor Division.

Now is your chance to make plans for presenting your latest work to the leading researchers from around the world by submitting your abstract!

Submit your abstract today!

The abstract deadline for PRiME 2016 is April 15, 2016.

Posted in Meetings

A radical new development from Cornell University has the potential to change the superconducting community. For the first time, researchers have developed a self-assembling, porous, 3D gyroidal superconductor, which may have completely new properties.

This from Futurity:

The gyroid is a complex cubic structure based on a surface that divides space into two separate volumes that are interpenetrating and contain various spirals. Pores and the superconducting material have structural dimensions of only around 10 nanometers, which could lead to entirely novel property profiles of superconductors.

Read the full article.

Benefits of superconductors

Because superconductors offer no resistance to electrical current and can repel magnetic fields, they hold immense potential for future applications. While we depend on electricity to power a majority of our devices, researchers are always looking for a way to cut heat resistance. Heat resistance not only causes the deterioration and breakdown of appliances, it also leads to wasted energy.

(MORE: Read “Superconductors and the Future.“)

Superconductors, however, offer no resistance to electrical current. However, this is only at extremely low temperatures. The new research out of Cornell University challenges that traditional notion.

Development could ‘revolutionize everything’

“There’s this effort in research to get superconducting at higher temperatures, so that you don’t have to cool anymore,” said Ulrich Wiesner, leader of the research group. “That would revolutionize everything. There’s a huge impetus to get that.”
(more…)