Chennupati Jagadish, distinguished professor at Australian National University

Chennupati Jagadish, distinguished professor at Australian National University

Chennupati Jagadish, long-time member and ECS Fellow, has recently been selected to receive Australia’s highest civilian honor. The Australian National University distingused professor has been named a Companion of the Order of Australia (AC), for his “eminent service to physics and engineering, particularly in the field of nanotechnology, to education as a leading academic, researcher, author and mentor, and through executive roles with national and international scientific advisory institutions.”

(MORE: Read Jagadish’s published research in the ECS Digital Library.)

“I am humbled, honored, and grateful for this honor,” Jagadish, former recipient of the ECS Electronics and Photonics Divison Award, said. “This is a wonderful recognition for 25 plus years of work my research group at the Australian National University in the field of semiconductor optoelectronics and nanotechnology.”

Jagadish’s work takes the form of such novel innovations as lasers for telecommunications, increased efficiency solar cells, and artificial, trainable neurons.

Throughout his scientific career, Jagadish has published more than 620 research papers and five U.S. patents.
“They say that rest is for the weak,” Jangadish said. “I say, ‘Look, I’m having fun.’ Science is fun for me and when you’re having fun you don’t really look at how long you’re working.”

In order to meet increasing water demands and combat the devastating effects of climate change, the United Arab Emirates (UAE) is looking toward scientific innovation to help quench the Persian Gulf’s thirst.

Increasing water shortage in UAE

The first issue that leads to UAE water shortages is the essentially non-existent rainfall paired with the country’s high water consumption. The UAE’s capital of Abu Dhabi receives only 75mm of rainfall annually, with the country as a whole receiving less than 100mm of rainfall each year . Pair that with a water consumption that is the highest in the world, coming in at 82 percent above global average, and the situation starts to look serous.

But that’s not the only issue in the UAE’s water supply problems. Climate change is making this land even hotter and drier than ever before, with a study stating that the effects of climate change may make the Persian Gulf uninhabitable by 2071.

(MORE: See how ECS scientists are addressing water and sanitation issues around the world.)

For this reason, the UAE is turning toward German and Japanese researchers, offering a $5 million reward to researchers who could help solve this problem.

(more…)

The capture and recycling of carbon dioxide in the atmosphere may be the first stop toward a “methanol economy.”

For the first time, researchers have successfully proven that carbon dioxide captured from the environment can be transformed into methanol. This not only removes damaging carbon dioxide emissions, but also produces an exciting alternative fuel. For some, this is an inevitable step toward an economy where fuel and energy storage would be primarily based on methanol.

The study was led by the University of Southern California professors G. K. Surya Prakash and George A. Olah and was published in the Journal of the American Chemical Society.

“Direct CO2 capture and conversion to methanol using molecular hydrogen in the same pot was never achieved before. We have now done it!” Prakash says.

Methanol is especially attractive because of its use as an alternative fuel in fuel cells and for hydrogen storage. Some believe that methanol is the future, with 70 million tons already being produced annually via the production of plastics.

This from Phys.org:

In the new study, the researchers developed a stable catalyst based on the metal ruthenium that does not decompose at high temperatures. The catalyst’s good stability allows it to be reused over and over again for the continuous production of methanol.

(more…)

Smart Sweatband Senses Dehydration

It’s not easy to tell if you’re dehydrated. Nearly 75 percent of Americans are chronically dehydrated, putting many people at a health risk.

Now, a smart sweatband could tell you when you exercise is bordering on dangerous. By measuring the chemicals in your sweat, this sensor can alert you of dangerous situations by linking to your smartphone in the first fully integrated electronic system that can provide continuous, noninvasive monitoring of multiple biochemical in perspiration.

The device has the potential to measure more than perspiration, with goals of preforming population-level studies for medical applications.

IMLBNow that we have extended the abstract submission deadline to February 15, don’t miss your chance to participate in IMLB 2016!

This international meeting will provide an exciting forum to discuss recent progress in advanced lithium batteries for energy storage and conversion. The meeting will focus on both basic and applied research findings that have led to improved Li battery materials, and to the understanding of the fundamental processes that determine and control electrochemical performance.

A major (but not exclusive) theme of the meeting will address recent advances in beyond lithium-ion technologies. The meeting will cover a wide range of topics relating to lithium battery science and technology including, but not limited to:

  • General and national projects
  • Anodes and cathodes
  • Nanostructured materials for lithium batteries
  • Liquid electrolytes and ionic liquids
  • Polymer, gel, and solid electrolytes
  • Issues related to sources and availability of materials for Li batteries
  • Li battery recycling
  • Electrode/electrolyte interface phenomena
  • Safety, reliability, cell design and engineering
  • Monitoring, control and validation systems
  • Manufacturing and formation techniques
  • Primary and rechargeable Li cells
  • Industrial production and development for HEVs, PHEVs, and EVs
  • Latest developments in Li battery technology

Make sure to submit your abstract before February 15, 2016!

Posted in Meetings
Tagged

Uphill Battle for Electric Cars

With plunging oil prices, it is proving to be more difficult than ever to entice buyers into purchasing an electric vehicle. While the low oil prices may be good for consumers’ gas tanks, the transportation sector continues to account for 27 percent of the United States’ greenhouse gas emissions.

The question then arises of how electric car manufacturers can steer folks back toward electric vehicles and away from gas-guzzling cars?

(MORE: Read Interface: PV, EV, and Your Home)

Impact of falling oil prices

“It definitely makes the transition to sustainable energy more difficult,” said Elon Musk, Tesla CEO, at a business conference in Hong Kong about the impact of the free-falling oil prices.

Tesla rose to prominence in 2003 when oil prices soared, making electric vehicles all the more tempting. With oil prices continually on the decline, it’s now up to companies like Tesla to compel buyers and stress the importance of transitioning toward cleaner vehicles.

New features for electric cars

For companies like Tesla, that means developing things like autonomous cars with “summon” features – allowing the user to call their car just like a pet. Even aesthetic aspects have become more important, with Tesla focusing on futuristic designs.

“What we’re aspiring to do is to make the cars so compelling that even with lower gas prices, it’s still the car you want to buy,” Musk said.

(more…)

Car sensor technology

Is your Uber driver going too fast? Soon, you’ll be able to prove it.
Image: Noel Tock under Creative Commons license

Since 2009, Uber has taken off all around the world as the premier ride-sharing company. Now, your Uber experience may improve thanks to the company’s application of sensor technology via each driver’s smartphone.

A typical Uber experience asks the driver and passenger to rate each other after each drive. If the mark comes in unusually low, Uber can now investigate your claims by examining the driver’s journey with data pertaining to speed and erratic driving. The company aims to collect this data from the gyrometer in the driver’s phone and data from GPS and accelerometers.

This from Uber:

Gyrometers in phones can measure small movements, while GPS and accelerometers show how often a vehicle starts and stops, as well as its overall speed. If a rider complains that a driver accelerated too fast and broke too hard, we can review that trip using data. If the feedback is accurate, then we can get in touch with the driver.

Read the full article.

An array of different sensory devices are used in your smartphone, allowing our phones to follow our commands and functions seamlessly. From the sensors in your screen that recognize touch to the voltage and current measurement sensors for battery utilization optimization, sensors are constantly responding to the ever-increasing demand for faster, cheaper, smaller, and more sensitive means to monitor the world around us.

Now these sensor technologies could help produce safer conditions on the road. If gyrometer results show that drivers are moving their phones while driving, Uber may offer mounts. If the accelerators pick up constant speeding conditions, Uber is ready to tell their drivers to curb their enthusiasm.

Tagged

Importance of Energy Storage

While society as a whole is moving toward cleaner, more renewable energy sources, there is one key component that is typically glossed over in the energy technology conversation: energy storage.

Developments in solar and wind are critical in the battle against climate change, but without advances in energy storage, our efforts may fall short. What happens when the sun isn’t shining or the wind isn’t blowing?

The folks at Popular Science are providing a friendly analogy to explain the the importance of energy storage.

Fighting the good fight in energy technology? Present your work at IMLB! Submit your abstracts today!

Graphene Simplifies Ice Removal

Graphene ice removal

Through a nanoribbon-infused epoxy, researchers were able to remove ice through Joule heating.
Image: Rice University

Graphene, better known as the wonder material, has seemingly limitless possibilities. From fuel cells to night-vision to hearing, there aren’t many areas that graphene hasn’t touched. Now, researchers from Rice University and transforming graphene for uses in air travel safety.

James Tour, past ECS lecturer and molecular electronics pioneer, has led a team in developing a thin coating of graphene nanoribbons to act as a real-time de-icer for aircrafts, wind turbines, and other surfaces exposed to winter weather.

(MORE: Read “High-Density Storage, 100 Times Less Energy“)

Through electrothermal heat, the graphene nanoribbons melted centimeter-thick ice on a static helicopter rotor blade in a -4° Fahrenheit environment.

This from Rice University:

The nanoribbons produced commercially by unzipping nanotubes, a process also invented at Rice, are highly conductive. Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed.

Read the full article.

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” Tour said.

The coating may also protect aircrafts from lightning strikes and provide and extra layer of electromagnetic shielding.

Advancing Lithium-Air Batteries

As electronics advances, the demand for high-performance batteries increases. The lithium-ion battery is currently leading the charge in powering portable electronic devices, but another lithium-based battery contender is on the horizon.

The lithium-air battery is one of the most promising research areas in current lithium-based battery technology. While researchers such as ECS’s K.M. Abraham have been on the Li-air beat since the late 90s, current research is looking to propel this technology with the hopes of commercializing it for practical use.

A new contender: Lithium-air batteries

Recently, Khalil Amine, IMLB chair; and Larry Curtiss, IMLB invited speaker, co-authored a paper detailing a lithium-air battery that could store up to five times more energy than today’s lithium-ion battery.

(MORE: Submit your abstract for IMLB today!)

This work brings society one step closer to the commercial use of lithium-air batteries. In previous works regarding Li-air, researchers continuously encountered the same phenomenon of the clogging of the pores of the electrode.

(more…)