Luminescent Materials to Help Engineering

Researchers have developed a new family of luminescent materials with the ability detect chemical and biological compounds, and even respond accordingly to a wide variety of extreme mechanical and thermal conditions.

The material is essentially a metallic polymer gel comprised of earth elements.

This from MIT News:

The material, a light-emitting lanthanide metallogel, can be chemically tuned to emit light in response to chemical, mechanical, or thermal stimuli — potentially providing a visible output to indicate the presence of a particular substance or condition.

Read the full article here.

The bio-inspired polymers are predicted to help engineers derive design principles applicable to other kinds of materials.

By combining a rare-earth element with polyethylene glycol, the material gains qualities that allow it to produce tunable, multicolored light emissions. These emissions have the ability to detect subtle changes in the environment and reflect them accordingly.

By applying this material to structures, researchers believe that engineers may be able to catch structural weakness and eminent failure before it happens.

[Image: MIT]

PS: Want to learn more about luminescent materials? Check out our new focus issue, Novel Applications of Luminescent Optical Materials. All of the papers are free!

Take a Short Course in Phoenix

ECS Short Courses are all day instruction designed to provide students or the seasoned professional an in-depth education on a wide range of topics.

Register online today!

Five Short Courses will be offered on Sunday, October 11, 2015.

These small classes, taught by industry leaders, are an excellent opportunity to receive personalized instruction, helping both novices and experts advance their technical expertise and knowledge.

short-course1Short Course #1
Basic Impedance Spectroscopy
Mark Orazem, Instructor
This course is intended for chemists, physicists, materials scientists, and engineers with an interest in applying electrochemical impedance techniques to study a broad variety of electrochemical processes.

short-course2Short Course #2
Fundamentals of Electrochemistry: Basic Theory and Kinetic Methods
Jamie Noël, Instructor
This course covers the basic theory and application of electrochemical science. It is targeted toward people with a physical sciences or engineering background who have not been trained as electrochemists, but who want to add electrochemical methods to their repertoire of research approaches.

(more…)

Carl Wagner Memorial Award Winner

Winter_Martin_2013Martin Winter of the Westfälische Wilhelms-Universität Münster will be awarded the 2015 Carl Wagner Memorial Award for his outstanding scientific work in fundamental or applied electrochemical science and technology.

Martin Winter has focused on R&D of new materials, components and cell designs for batteries and supercapacitors—in particular for lithium-ion batteries—for nearly 25 years. Currently, he holds a Chair for Applied Materials Science for Electrochemical Energy Storage and Conversion at the Institute of Physical Chemistry at Münster University, Germany.

Aside from his position at Münster University, Winter is the Director of the Münster Electrochemical Energy Technology (MEET) Battery Research Center. The center combines outstanding equipment with an international team of 140 scientists, engineers, and technicians. Winter has also been named Director of the new Helmholtz Institute Münster, as well as serving as an associate of the National Platform E-Mobility, where he consults the German chancellor and government.

Additionally, Winter is the head of the research council of the Battery Forum Germany, which advises the German Federal Ministry of Education and Research in the field of electrochemical energy storage. His strides in battery technology have yielded him much recognition, including ECS’s Battery Technology Award and the Research and Technology Award of the International Battery Materials Association.

The award will be presented at the 228th ECS Meeting in Phoenix, Arizona this October. Registration for this meeting is now open!

And take a look at Winter’s meeting abstract entitled, “Anodes for Lithium Ion Batteries Revisited: From Graphite to High-Capacity Alloying- and Conversion-Type Materials and Back Again.”

Coffee Grounds to Store Greenhouse Gases

Do your old, damp coffee grounds have the potential to save the world? New research from the journal Nanotechnology states that the same coffee grounds you toss in the trash every day actually have the ability to store methane.

ECS Fellow Meyya Meyyappan and a team of researchers found that by combining the used coffee grounds with potassium hydroxide, a material with the ability to store substantial amounts of methane was created.

Coffee Grounds Fight Climate Change

In light of global warming and the damaging effects rising temperatures and increased greenhouse gas emissions have on the planet, the ability to store harmful methane is critical.

Methane is a preventable greenhouse gas that accounts for about 10 percent of all harmful emissions derived from human activity. While methane doesn’t stay in the atmosphere as long as the more commonly talked about carbon dioxide, it is far more devastating to the climate due to its extreme efficiency in absorbing heat. In fact, methane is about 84 times more potent than carbon dioxide.

(more…)

The Beauty and Mystery of the Microworld

[Click to enlarge]

[Click to enlarge]

Photos and text by Galina Strukova and Gennady Strukov.

The beauty of these pictures is intriguing and fascinating by its asymmetric, exquisite and intricate pattern. What is it? Is it a product of a novel computer program or photographs of fine creations of nature? Neither statement is true. In fact, these are not pictures, but images of metal samples made with an electron microscope.

Only some color is added to the images to emphasize their resemblance to natural objects of our macroworld: seashells, jelly-fish, leaves of exotic plants. The size of the samples is from tens of micrometers to 1-2 millimeters. They are produced via self-organization of nano-sized (millionth of a millimeter) wires growing on porous membranes under the action of electric current pulses.

[Click to enlarge]

[Click to enlarge]

This is how such volumetric (3D) sculptures are described in scientific journals [1- 3] along with the experimental conditions for their reproduction, i.e., the conditions of the process (electrolyte composition, porous membrane, pulsed current mode) are specified, when growing nanowires organize themselves in an inexplicable fashion into “sculptures” that show perfect resemblance to natural creations. The authors have managed to isolate and photograph them with a modern electron microscope.

Besides, they have proved that the internal structure of this metallic “seashells” is a volumetric multilayer network woven by nano-sized wires. Such antenna-like samples are expected to find application in nanotechnology. Now we can produce such “sculptures” from various metals “by order”, examine them and admire their elegant forms and fascinating beauty. However, it is still a riddle. Why do they so closely resemble shells and leaves? Does this mysterious self-organization have anything in common with formation of plant leaves and seashells?


[1] J of Bionic Engineering 10 (2013) 368–376
[2] Materials Today 16 (2013) 98–99
[3] Materials Letters 128 (2014) 212-215

Top 15 Science and Technology Blogs

wordle 13Here at ECS, we aim to stay on top of all the latest scientific discoveries and innovations around that world. That’s why we created the ECS Redcat Blog.

Our blog aims to provide the latest scientific news for the benefit of all interested. However, we can’t cover every event in the scientific community. Check out some of our other favorite science blogs below:

The Last Word On Nothing
Named after Victor Hugo’s quote, “Science says the first word on everything, and the last word on nothing,” this blog gathers together a vast array of science journalists to publish essays, informational articles, and more.

PLOS
PLOS, or the Public Library of Science, hosts a blog to keep you informed on the latest innovations and developments in science. Whether you’re trying to find out what’s on your dog’s mind or how climate change will shape the future, PLOS has the answers.

Live Science
One look at Live Science’s homepage and you get a glimpse into the biggest advancements in science today. Find the latest research coming out of academic institutes as well as the newest innovations in industry.

(more…)

Power Behind the Next Electronics Revolution

The semiconducting silicon chip brought about a wave of electronic transformation the propelled technology and forever changed the way society functions. We now live in a digital world, where almost everything we encounter on a daily basis is comprised of a mass of silicon integrated circuits (IC) and transistors. But with the materials used to develop and improve these devices being pushed to their limits, the question of the future of electronics arises.

The Beginnings

The move towards a digital age really took flight late in 1947 at Bell Labs when a little device known as the transistor was developed. After this development, Gordon Moore became a pioneering research in the field of electronics and coined Moore’s law in 1965, which dictated that transistor density would double every two years.

Just over 50 years after that prediction, Moore’s law is still holding true. However, researchers and engineers are beginning to hit a bit of a roadblock. Current circuit measurement are coming in a 2nm wide—equating to a size roughly between a red blood cell and a single strand of DNA. Because the integrated circuits are hitting their limit in size, it’s becoming much more difficult to continue the projected growth of Moore’s law.

The question then arises of how do we combat this problem; or do we move toward finding an alternative to silicon itself? What are the true limits of technology?

(more…)

Olin Palladium Award Winner

MacdonaldDigby D. Macdonald of the University of California, Berkeley will be awarded the 2015 Olin Palladium Award for his distinguished contributions to the field of electrochemical and corrosion science.

Macdonald is currently the Professor in Residence at the University of California, Berkeley’s Departments of Nuclear Engineering and Materials Science and Engineering.

Throughout his rousing career, Macdonald held numerous positions in academia at such institutes as Ohio State University and Pennsylvania State University. In 2011, Macdonald was nominated for a Nobel Prize in Chemistry. He has been recognized by many for his scientific achievements, receiving the Frumkin Memorial Medal in 2015 and the Gibbs award in 2013.

His work on passivity and the properties of aqueous solutions at high temperatures and pressures have not only impacted the landscape of science, but have also made him a pillar and mentor for many students in electrochemical and corrosion science.

Science joining ECS in 1975, the Society has made Macdonald a Fellow and presented him with both the Wagner Memorial and Uhlig Awards.

The award will be presented at the 228th ECS Meeting in Phoenix, Arizona this October. Registration for this meeting is now open!

And take peek at Macdonald’s meeting abstract entitled, “Some Critical Issues of the Breakdown of Passive Films.”

ECS’s Nate Lewis is propelling his vision of efficient and affordable alternative energy sources with the new development of an “artificial leaf” system that splits water through solar energy to create hydrogen fuel.

(PS: Make sure to catch Nate Lewis’ presentation this October at the fifth international Electrochemical Energy Summit held during the 228th ECS Meeting!)

“This new system shatters all of the combined safety, performance, and stability records for artificial leaf technology by factors of 5 to 10 or more,” says Lewis, a 33-year ECS member and scientific director of the Joint Center for Artificial Photosynthesis.

Shattering Water Splitting Records

He and his team, including postdoctoral scholar and ECS member Ke Sun, were able to achieve recording-setting outcomes through the development of a advice with three novel components: two electrodes, one photoanode and one photocathode, and a membrane.

This from Futurity:

The photoanode uses sunlight to oxidize water molecules, generating protons and electrons as well as oxygen gas. The photocathode recombines the protons and electrons to form hydrogen gas.

(more…)

Call for Papers: ECS Focus Issues

focus_issues_coversECS publishes special or “focus” issues in order to highlight scientific and technological areas of current interest and future promise that are expanding rapidly or have taken a new direction.

The editors of the Journal of The Electrochemical Society (JES) and the ECS Journal of Solid State Science and Technology (JSS) are calling for papers for these upcoming focus issues:

Defect Characterization in Semiconductor Materials and Devices
Submission Deadline: October 21, 2015
In recent years, a rapidly growing interest and concern have developed within the microelectronics industry and research community with respect to defect characterization in hetero-epitaxial layers and nano-structures for CMOS and photonic applications. Read more.

Honoring Allen J. Bard
Submission Deadline: September 30, 2015
ECS welcomes original research contributions to a special issue of the Journal of The Electrochemical Society honoring Allen J. Bard. Prof. Bard has been a pioneer of modern electrochemistry for over 60 years and a long-standing member of the Society. For his 80th birthday, The Electrochemical Society founded the Allen J. Bard Award in 2013 to honor his extensive contributions to the field of electrochemistry; the first award was given in May 2015. Read more.