Call for Papers: JSS Focus Issue

focus_issues_coversThe editors of the ECS Journal of Solid State Science and Technology are calling for papers for the upcoming focus issue: Novel Applications of Luminescent Optical Materials.

Submission Deadline: July 15, 2015

Submit your manuscript today!

The research landscape of luminescent and optical materials is rapidly changing due to a need for such materials outside the lighting and display technologies. Novel materials are needed and are developed with luminescent and optical properties appropriately tuned for applications in solar cells, sensors, bio-imaging, light extraction, and related opto-electronics in addition to solid state lighting and display technologies.

Find out more.

Read previous focus issues in ECS journals.

Aluminum Battery to Outpace Li-ion (Video)

A team of Stanford University researchers have developed a high-performance aluminum battery.Image: YouTube/Stanford University

A research team from Standford University has developed a high-performance aluminum battery.
Image: YouTube/Stanford University

Researchers have been attempting to make a commercially viable aluminum-ion battery for years. Now, a team from Stanford University may have developed just the thing to outpace widely used lithium-ion and alkaline batteries.

The new aluminum-ion battery demonstrates high performance, a fast charging time, long-lasting cycles, and is of low cost to produce.

“We have developed a rechargeable aluminum battery that may replace existing storage devices, such as alkaline batteries, which are bad for the environment, and lithium-ion batteries, which occasionally burst into flames,” said Hongjie Dai, a professor of chemistry at Stanford.

The researchers were able to achieve this novel battery by applying graphite as the cathode material.

(more…)

DIY Water Glass

Hackett is back and he’s cooking up this ultra-strong adhesive. Find out how to make sodium silicate, otherwise known as water glass, which can provide you with a sable and non-toxic glue.

And if you’re looking for more videos on science, make sure to head over to our YouTube channel to see what we have to offer!

The Rise of Quantum Dots

Andrea Guenzel, ECS Publications Specialist, recently spotted a CNN article on quantum dots and how they’re poised to change industry.

The technology behind Edison’s incandescent blub may be a thing of the past, but the warm, gentle glow that it produced may be making its way back into your living room.

But we’re not scrapping the advancements in LEDs and regressing to old technology to do this. Instead, we’re turning our attention to quantum dots—the tiny crystal-like particles that are 10,000 times smaller than the width of human hair.

And the dots’ applications do not end simply at bulbs. These tiny bursts of light are expected to impact displays, solar cells, and cancer imaging equipment as well.

(more…)

The Excrevator will help put an end to emptying pit latrines by hand.Image: NC State University

The Excrevator will help put an end to emptying pit latrines by hand.
Image: NC State University

Critical technology gaps in water, sanitation, and hygiene are being faced all over the world. According to UNICEF, 2.5 billion people—36 percent of the world’s population—don’t have access to a toilet. Due to this, many people in the developing world either practice open defecation or utilize pit latrines. In turn, this leads to a high risk of contracting diseases ranging from typhoid to hepatitis.

Tate Rogers, an engineering student from North Carolina State University, decided that something has to be done about this. In 2011, Rogers began developing a device that would help those in the developing world more safely deal with raw sewage.

It’s four years later, and the project is still under way—but it’s beginning to come to fruition.

(more…)

They hybrid supercapacitor can store large amounts of energy, recharge quickly, and lost for more than 10,000 recharge cycles.Image: UCLA

The hybrid supercapacitor can store large amounts of energy, recharge quickly, and last for more than 10,000 recharge cycles.
Image: UCLA

Researchers from UCLA’s California NanoSystems Institute (CNSI) have developed a new generation of supercapacitors that not only emphasizes the best inherent properties of the supercapacitor itself, but also combines it with some of the best qualities of batteries to make a new energy storage medium.

The new supercapacitor is paper-thin and has an extremely fast recharge time. Additionally, it can last more than 10,000 recharge cycles.

Researchers believe this new development will yield real-world potential to address energy issues and improve personal electronics.

“The microsupercapacitor is a new evolving configuration, a very small rechargeable power source with a much higher capacity than previous lithium thin-film microbatteries,” said Maher El-Kady, co-author of the study and postdoctoral scholar.

(more…)

Successful Semiconductor Meeting in China

An article by ECS Fellow Yue Kuo.

kuo-students

Kuo and three student award winners at CSTIC 2015. (Click on photo to enlarge.)

ECS and SEMI are pleased to announce that the annual China Semiconductor Technology International Conference (CSTIC 2015) successfully concluded on March 16th in Shanghai, China with about 311 speakers and 606 attendees from around the world.

This marks the 16th year that CSTIC held this annual international conference. (ECS is a founding sponsor of the event.) With a focus on semiconductor technology and manufacturing, CSTIC promoted technical exchanges on the latest developments in semiconductor technology and manufacturing and facilitated investment and collaboration in the semiconductor industry in Asia, particularly China.

(more…)

Silicon is the common material used in solar cells and computer chips, but gallium arsenide is an alternative material with many advantages. Image: YouTube/Stanford University

Silicon is the common material used in solar cells and computer chips, but gallium arsenide is an alternative material with many advantages.
Image: YouTube/Stanford University

When we think of chips and solar cells, we think of silicon. However, silicon isn’t the only chip-making material out there.

Researchers from Stanford University are turning their attention away from silicon and are looking toward gallium arsenide to make faster chips and more efficient solar cells.

Gallium arsenide is a semiconductor material with extraordinary properties. Electrons can travel six times faster in gallium arsenide than in silicon, allowing for faster operation of transistors. Unfortunately, cost effectiveness is not one of gallium arsenide’s alluring properties—which has caused researchers to opt for the much cheaper and less effective silicon material.

One single wafer of gallium arsenide could cost up to $5,000, whereas the same size wafer of silicon costs only $5.

(more…)

Plastic + Egg Whites = Bioplastics

After studying the antibacterial properties of bioplastics, researchers found that albumin looks to be the most promising.Image: Cal Powell/UGA

After studying the antibacterial properties of bioplastics, researchers found that albumin looks to be the most promising.
Image: Cal Powell/UGA

Since Leo Baekeland’s invention of Bakelite in 1907, plastic has undergone a lot of transformation. Now, plastic isn’t just used in toys and phones—it also has promising potential in medical applications.

Researchers from the University of Georgia are creating bioplastics from albumin—a protein found in eggs with significant antibacterial properties—to expand plastic’s potential into areas such as wound healing dressing, sutures, catheter tubes, and drug delivery.

“It was found that it had complete inhibition, as in no bacteria would grow on the plastic once applied,” said Alex Jones, a doctoral student at the University of Georgia. “The bacteria wouldn’t be able to live on it.”

The development detailed in this study is critical due the high percentage of hospital-acquired infections.

(more…)

dahn-researchThe electric car industry is on the rise, but battery performance for these vehicles is still not where it needs to be to implement wide-scale usage. To address this issue, researchers from Dalhousie University have produced a ternary blend of electrolyte additives to improve the performance of the li-ion cell.

An open access paper recently published in the Journal of The Electrochemical Society (JES) details a novel development in electrolyte additives that, once applied to the li-ion cell, demonstrate a very high charge-discharge capacity.

The team began their study by investigating the performance of NMC pouch cells and electrolytes with various sulfur or phosphorus electrolyte additives.

They concluded that the new additive will improve the life cycle performance of the li-ion battery, as well as improve upon its safety.

(more…)