Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in this image of a water droplet bouncing off a treated sample.Photo: J. Adam Fenster / University of Rochester

Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in this image of a water droplet bouncing off a treated sample.
Photo: J. Adam Fenster / University of Rochester

New super-hydrophobic metals developed at the University of Rochester could mean big things for solar innovation and sanitation initiatives.

The researchers, led by Professor Chunlei Guo, have developed a technique that uses lasers to render materials extremely water repellant, thus resulting in rust-free metals.

Professor Guo’s research in novel not in the sense that he and his team are creating water resistant materials, instead they are creating a new way to develop these super-hydrophobic materials by taking away reliance on chemical coatings and shifting to laser technology.

(more…)

Development in Lithium-Ion Batteries

You can thank “dendrites” when your smartphone battery goes from a solid 40 percent charge to completely dead in a matter of 20 minutes. Thankfully, researchers out of Purdue University are researching these dendrites – otherwise known as the slayer of lithium-ion batteries – and developing something that could greatly improve the li-ion.

Dendrites work to destroy lithium-ion batteries by forming an anode electrode and growing until they affect battery performance – potentially resulting in complete battery failure.

The new study out of Purdue University explores this issue with the intention of creating a safer and longer-lasting lithium-ion battery that could be charged within minutes instead of hours.

(more…)

Member Spotlight – Alireza Mahdavifar

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.Image: Georgia Tech/The Poultry Site

ECS student member Alireza Mahdavifar observes live bacteria moving inside the microfluidic channel.
Image: Georgia Tech/The Poultry Site

Along with a team of researchers out of Georgia Tech, ECS student member Alireza Mahdavifar has designed and fabricated the prototype of a microfluidic device that exploits cell movement to separate live and dead bacteria during food processing.

The research, entitled “A Nitrocellulose-Based Microfluidic Device for Generation of Concentration Gradients and Study of Bacterial Chemotaxis,” has been recently published in the Journal of The Electrochemical Society.

The new development consists of a microfluidic device that exploits cell movement to separate live and dead bacterial during food processing. The device is novel due to the fact that while screening for foodborne pathogens, it can be difficult to distinguish between viable and non-viable bacteria. Mahdavifar and the team out of Georgia Tech responded to this issue by creating a device that can separate live cells from dead ones for real-time pathogen detection.

(more…)

Intel may be known for microprocessors and long-time ECS member Gordon E. Moore, but now the company’s Edison technology is lending itself to something entirely different.

They call it the Spider Dress, and the innovation involved in making this product goes far beyond sheer aesthetic value.

The 3-D printed dress was created by Anouk Wipprecht and uses Intel’s Edison technology to power robotic spider legs surrounding the collar, designed to keep people out of your personal space.

The dress’s robotic arms are connected to proximity sensors, which will react when someone gets too close to the wearer of the dress. Further, the sensors use biometric signals to measure the wearer’s stress level, which allow the dress to respond based on your mood.

(more…)

4 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Post Doc (NIR/EIS)
Irstea – Montpellier, France
This Post Doc is integrated to a binational project, NEXT. The goal of this project is to investigate the in-line and real-time use of novel holistic sludge descriptors to measure, monitor, model and predict sludge behaviour through sludge treatment processes and use this knowledge for the optimization of design and operation of treatment processes. It will lean on previous works developed by two Irstea teams (on the one hand on organic fluids characterisation based on electrical measurements and rheology and on the other hand on near infrared (NIR) spectroscopy on turbid fluids and soils).

(more…)

interface_blogIf your organization is conducting research and development in photovoltaics, consider sharing your products and services with ECS scientists and engineers. Interface, the quarterly magazine of ECS, is currently accepting advertisements and classified ads for the spring 2015 issue.

The deadline for all advertisements is February 1st.

Interested organizations should contact Becca Jensen Compton, Development Manager at becca.compton@electrochem.org.

sponsor_blogFrom coffee breaks to technical demonstrations, exhibitors and sponsors help support the Chicago meeting while presenting their products and services to scientists and engineers from around the world.

“The main opportunity for us is to meet our customers… We gain valuable information about the newest techniques and the newest applications that people are trying to address.” —Bill Eggers, BioLogic USA

Exhibitors connect with customers—old and new—and stay on the cutting edge of research in their field.

If you are interested in partnering with ECS as an exhibitor or sponsor, please submit your application by February 20th to Becca Jensen Compton, becca.compton@electrochem.org.

corrosion_blogAn article by C. Liu and R.G. Kelly in the latest issue of Interface.

Localized corrosion is characterized by intense dissolution at discrete sites on the surface of a metal or alloy, while the remainder of the surface corrodes at a much lower rate. The ratio of the two rates is on the order of 10. Typical forms of localized corrosion include crevice corrosion, pitting, stress corrosion cracking, and intergranular corrosion. Localized corrosion represents the primary corrosion failure mode for passive/corrosion resistant materials.

There has been extensive experimental characterization of the dependence of the susceptibility to corrosion on alloy and solution composition, temperature, and other variables. Computational modeling can play an important role in improving the understanding of localized corrosion processes, in particular when it is coupled with experimental research that accurately quantifies the important characteristics that control corrosion rate and resultant morphology. There are many modeling methods that can be applied, with the choice of method driven by the goal of the modeling exercise.

(more…)

From Silk to Sensors

The India-based Achira Labs has taken silk screening to a whole new level.

Chemical engineers from Achira Labs have found a way to weave diabetes test strips from silk, rather than the conventional plastic or paper.

But they’re not creating these strips for luxury. Silk would actually have several advantages in a country such as India, where weavers are abundant and silk is inexpensive.

Achira Labs have used these silk sensors before to detect other medical issues, including strips that change color when they detect a deadly type of diarrhea in diapers.

These new silk strips for diabetics are not only just as efficient as other types of glucose strips, they are also easier to manufacture.

(more…)

corrosion_blog_interfaceAn article by Kenji Amaya, Naoki Yoneya, and Yuki Onishi published in the latest issue of Interface.

Protecting structures from corrosion is one of the most important challenges in engineering. Cathodic protection using sacrificial anodes or impressing current from electrodes is applied to many marine structures. Prediction of the corrosion rates of structures and the design of cathodic protection systems have been traditionally based on past experience with a limited number of empirical formulae.

Recently, application of numerical methods such as the boundary element method (BEM) or finite element method (FEM) to corrosion problems has been studied intensively, and these methods have become powerful tools in the study of corrosion problems.

With the progress in numerical simulations, “Inverse Problems” have received a great deal of attention. The “Inverse Problem” is a research methodology pertaining to identifying unknown information from external or indirect observation utilizing a model of the system.

Read the rest.