Cochlear implants have been the go-to tool for those with significant hearing loss. However, in order to implant a cochlear device, one must be willing to go under the knife and dish out a substantial amount of money.

That’s why researchers from Colorado State University started looking for a more practical solution, which caused them to turn to an unlikely organ: the tongue.

Colorado State University researchers John William, Leslie Stone-Roy, and JJ Moritz have developed a Bluetooth-enabled microphone earpiece in conjunction with a smart retainer that fits on a person’s tongue to strengthen the hearing of partially deaf people.

Of course, you can’t organically hear though your tongue. Instead, the device works to reprogram areas of the brain in order to help partially deaf people interpret various sensations on the tongue as certain words. The tongue is the perfect organ for this application due to its hypersensitive ability to discern between tactile sensations.

(more…)

The Arizona Section of ECS will be hosting a meeting with special guest speaker Professor Robert F. Savinell.

The Arizona Section of ECS will be hosting a meeting with special guest speaker Professor Robert F. Savinell.

Date: January 26, 2014

Time: Networking and refreshments at 6:15 PM; Seminar begins at 7:00 PM

Place: University of Arizona
Tuscon, AZ 85721
Agave Room, 4th Floor of Student Union Building

Cost: Free to attend; $5 for light refreshments

Speaker: Professor Robert F. Savinell
George S. Dively Professor of Electrochemical Engineering at Case Western Reserve University
Professor Savinell is recognized as a leading authority on electrochemical energy storage and conversion. His research has been directed at fundamental science and engineering research for electrochemical systems and novel device design, development, and optimization. Dr. Savinell has over 100 publications and seven patents in the electrochemical field. He is a past chair of ECS’s Electrolytic and Electrochemical Engineering Division, a former editor of the Journal of The Electrochemical Society, and a Fellow of ECS.

(more…)

Flexible, Three-Dimensional Supercapacitors

The flexible material created at Rice University has the potential for use in electronics or for energy storage.Image: Tour Group/Rice University

The flexible material created at Rice University has the potential for use in electronics or for energy storage.
Image: Tour Group/Rice University

James Tour and his group at Rice University have developed and tested a flexible, three-dimensional supercapacitor with the potential to be scaled up for commercial applications.

In this study, the researchers advanced what they had already developed in laser-induced graphene (LIG) by producing and testing the stacked, three-dimensional supercapacitors.

Their prior findings showed that firing a laser at an inexpensive polymer burned off other elements and left a film of porous graphene, which has the potential to be the perfect electrode for supercapacitors or electronic circuits.

The researchers began by making vertically aligned supercapacitors with laser-induced graphene on both sides of a polymer sheet.

(more…)

Member Spotlight – Ryohei Mori

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.Image: Journal of The Electrochemical Society

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.
Image: Journal of The Electrochemical Society

A new long-life aluminum-air battery is set to resolve challenges in rechargeable energy storage technology, thanks to ECS member Ryohei Mori.

Mori’s development has yielded a new type of aluminum-air battery, which is rechargeable by refilling with either salt or fresh water.

The research is detailed in an open access article in the Journal of The Electrochemical Society, where Mori explains how he modified the structure of the previous aluminum-air battery to ensure a longer battery life.

Theoretically, metal-air technology can have very high energy densities, which makes it a promising candidate for next-generation batteries that could enable such things as long-range battery-electric vehicles.

However, the long-standing barrier of anode corrosion and byproduct accumulation have halted these batteries from achieving their full potential. Dr. Mori’s recently published paper, “Addition of Ceramic Barriers to Aluminum-Air batteries to Suppress By-product Formation on Electrodes,” details how to combat this issue.

(more…)

A New Generation of Electric Car Battery

Scientists out of the University of Waterloo are one step closer to inventing a cheaper, lighter and more powerful rechargeable battery for electric vehicles. At the heart of this discovery lies a breakthrough in lithium-sulfur batteries due to an ultra-thin nanomaterial.

This from the University of Waterloo:

Their discovery of a material that maintains a rechargeable sulfur cathode helps to overcome a primary hurdle to building a lithium-sulfur (Li-S) battery. Such a battery can theoretically power an electric car three times further than current lithium-ion batteries for the same weight – at much lower cost.

(more…)

computer_simulation2An article by N.J. Laycock, D.P. Krouse, S.C. Hendy, and D.E. Williams published in the latest issue of Interface.

Stainless steels and other corrosion resistant alloys are generally protected from the environment by ultra-thin layers of surface oxides, also called passive films. Unfortunately, these films are not perfect and their Achilles’ heel is a propensity to catastrophic local breakdown, which leads to rapid corrosion of the metallic substructure. Aside from the safety and environmental hazards associated with these events, the economic impact is enormous.

In the oil and gas and petrochemical industries, it is of course usually possible to select from experience a corrosion-resistant alloy that will perform acceptably in a given service environment. This knowledge is to a large extent captured in industry or company-specific standards, such as Norsok M1.

However, these selections are typically very conservative because the limits tend to be driven by particular incidents or test results, rather than by fundamental understanding. Decision-making can be very challenging, especially in today’s mega-facilities, where the cost of production downtime is often staggeringly large. Thus significant practical benefits could be gained from reliable quantitative models for pitting corrosion of stainless steels. There have been several attempts to develop purely stochastic models of pitting corrosion.

Read the rest.

2014 ECS Web Survey Results

ECS logoThanks for participating in our survey about what you want the new electrochem.org (link to the current site – new site coming in the 4th quarter) to look like. We had over 500 people respond with some great suggestions. Thanks so much! Here’s a little peek inside.

(BTW: We picked a winner for the gift card too, waiting for confirmation and I’ll share the name. Check your email!)

(more…)

Posted in Membership

Dutch Universities Fighting for Open Access

Radboud University

Dutch institutions ‘unbending’ on fee-free demand as talks with Elsevier resume

John Lewis, ECS’ Associate Director of Meetings, spotted an article in Times Higher Education out of the UK last week on open access in the Netherlands — Elsevier’s home court. And yes, we are all a little obsessed with open access here in the office.

In January last year, Sander Dekker, the Dutch minister for education, culture and science, decreed that 60 per cent of Dutch research articles must be open access by 2019 and 100 per cent by 2024. Dutch university presidents responded by agreeing to make their renewal of subscription deals dependent on publishers taking steps to realise this goal.

Well, the current deal expired this month. No one was talking to each other for awhile, now both sides are back at the bargaining table. However, Gerard Meijer, president of Radboud University and one of the lead negotiators for the Dutch universities, insisted that Dutch universities were determined not to bend.

“We are willing to pay publishers for the work they do, but Elsevier’s profit margin is approaching 40 per cent, and universities have to do the [editing] work and pay for it. We aren’t going to accept it any longer. I think from the fact that Elsevier is not willing to move much, they simply still don’t believe it. Well, they got us wrong,” he said.

We’ll be keeping a close eye on this.

Read the article.

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are Open Access! Follow the links to get the full-text version.

“Modeling Volume Change due to Intercalation into Porous Electrodes”
Published in the Journal of The Electrochemical Society
Lithium-ion batteries are electrochemical devices whose performance is influenced by transport processes, electrochemical phenomena, mechanical stresses, and structural deformations. Many mathematical models already describe the electrochemical performance of these devices. Some models go further and account for changes in porosity of the composite electrode. Read the rest.

(more…)

“The first meeting that I attended was held in Bridgeport, Connecticut, in 1928. I went with Dr. W. C. Moore, who had previously persuaded me to become a member. I knew immediately that I was interested in the Society. That interest was not due to the papers that I listened to. There was nothing strictly on electro-organic on the program. I believe that it was due to the enthusiasm of the group, and the fact that I was made to feel that I belonged.”
-Sherlock Swann, Jr.

An article by Richard Alkire in the latest issue of Interface.

Electro-organic chemistry had its champion in Sherlock Swann, Jr. His scholarship, especially his massive bibliographic efforts, served singlehandedly to keep alive the promise and spirit of electro-organic chemistry in the U.S. from the 1930s to the 50s.

He was a charter member of the Electro-organic Division of The Electrochemical Society, formed in 1940, and was the first person to hold the offices of Secretary, Vice-Chair, and Chair of that Division. Beginning with his first ECS meeting in 1928 and continuing throughout his life, he played an active role in the Society, including a term as President in 1958-59. He was the Electro-organic Divisional Editor of the Journal of The Electrochemical Society, 1939-59; the Lifetime Honorary Chair of the Chicago Section; and was made an Honorary Member of the Society in 1974.

Swann was born in 1900 in Baltimore, Maryland, where his family had deep roots and a tradition of service to society. His great-grandfather, Thomas Swann, served as governor of Maryland, as mayor of Baltimore, as President of the Baltimore & Ohio Railroad, and was a leading force in the creation of Druid Hill Park, Baltimore’s first large municipal park. His father served as Baltimore police commissioner and subsequently as Postmaster, and led the reconstruction of downtown Baltimore police commissioner and subsequently as Postmaster, and led the reconstruction of downtown Baltimore and its streets after the Great Fire of 1904.

Read the rest.