Battery Research for Higher Voltages

BatteryLithium-ion batteries supply billions of portable devices with energy. While current Li-ion battery designs may be sufficient for applications such as smartphones and tablets, the rise of electric vehicles and power storage systems demands new battery technology with new electrode materials and electrolytes.

ECS student member Michael Metzger is looking to address that issue by developing a new battery test cell that can investigate anionic and cationic reactions separately.

Along with Benjamin Strehle, Sophie Slochenbach, and ECS Fellow Hubert A. Gasteiger, Metzger and company published their new findings in the Journal of The Elechemical Society in two open access papers.

(READ: “Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation” and “Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions“)

“Manufacturers of rechargeable batteries are building on the proven lithium-ion technology, which has been deployed in mobile devices like laptops and cell phones for many years,” says Metzger, the 2016 recipient of ECS’s Herbert H. Uhlig Summer Fellowship. “However, the challenge of adapting this technology to the demands of electromobility and stationary electric power storage is not trivial.”

(more…)

SmartphoneRecent safety concerns with lithium-ion batteries exploding in devices such as the Samsung Galaxy Note 7 phone and hoverboards have many energy researchers looking into this phenomenon for a better understanding of how batteries function when stressed.

A new open access paper published in the Journal of The Electrochemical Society provides some insight into these safety hazards associated with the Li-ion battery by taking a look inside the battery as it is overworked and overcharged.

Overcharging or overheating Li-ion batteries causes the materials inside to breakdown and produce bubbles of oxygen, carbon dioxide, and other gases. As more of these gases are produced, they begin to buildup and cause the battery to swell. That swelling can lead to explosion.

“The battery can either pillow a small amount and keep operating, pillow a lot and cease operation, or keep generating gas and rupture the cell, which can be accompanied by an explosion or fire,” Toby Bond, co-author of the paper, told New Scientist.

(more…)

According to scientists at the University at Buffalo, a new glowing dye called BODIPY could be a central part of the liquid-based batteries that researchers are looking at to power our cars and homes.

BODIPY – or boron-dipyrromethene – is a fluorescent material that researchers believe could be an ideal material for stockpiling energy.

While the dye is fluorescent, that’s not what initially attracted scientists. According to new research, the dye has chemical properties that enables it to store electrons and participate in electron transfer. These two properties are critical for energy storage.

The new research shows that BODIPY-based batteries operate efficiently and display promising potential for longevity, functioning for more than 100 charge cycles.

“As the world becomes more reliant on alternative energy sources, one of the huge questions we have is, ‘How do we store energy?’ What happens when the sun goes down at night, or when the wind stops?” says lead researcher Timothy Cook, ECS member and assistant professor of chemistry at the University at Buffalo. “All these energy sources are intermittent, so we need batteries that can store enough energy to power the average house.”

What’s Next for Batteries

BatteryTwenty-sixteen marked the 25th anniversary of the commercialization of the lithium-ion battery. Since Sony’s move to commercialize the technology in 1991, the clunky electronics that were made possible by the development of the transistor have become sleek, portable devices that play an integral role in our daily lives – thanks in large part to the Li-ion battery.

“There would be no electronic portable device revolution without the lithium-ion battery,” Robert Kostecki, past chair of ECS’s Battery Division and staff scientist at Lawrence Berkeley National Laboratory, tells ECS.

Impact of Li-ion technology

Without Li-ion batteries, we wouldn’t have smartphones, tablets, or laptops – more so, electric vehicles would have a slim chance of competing in the transportation sector and dreams of large-scale energy storage for a renewable grid may be dashed. Without the Li-ion, there would be no Tesla. There would be no Apple. The landscape of Silicon Valley as we know it today would be vastly different.

While the battery may have hit the marketplace in the early ‘90s, pioneers such as Stanley Whittingham, Michael Thackeray, John Goodenough, and others began pushing the technology in the ‘70s and ‘80s.

In its initial years, Li-ion battery technology boomed. As the field gained more interest from researchers after commercialization, developments started pouring in that doubled, or in some cases, tripled the amount of energy the battery was able to store. While progress continued over the years, the pace began to slow. Incremental advances at the fundamental level opened new paths for small, portable electronics, but have not answered demands for large-scale grid storage or an electric vehicle battery that will allow for a drive range of over 300 miles on a single charge.

(more…)

Steve Martin

ECS member Steve Martin receives a $2.5M grant to pursue research in glassy solids.
Image: Christopher Gannon

The world relies on battery power. The smartphone market alone – which is powered by lithium-ion batteries – is expected to reach 1.5B units in 2016. ECS member Steve Martin believes he may be able to take those batteries to the next level through efforts in glassy solids.

Martin, a professor at Iowa State University and associate of the U.S. Department of Energy’s Ames Laboratory, has been in the field of battery research for over 30 years. Throughout that time, his main focus of research has shifted to measuring the basic properties of glassy solids and trying to understand how their ions move and the thermal and chemical stability.

Martin believes that using glass solids as the electrolytes in batteries would make them safer and more powerful. This is an effort to diverge from traditional liquid-electrolyte batteries, which have experienced issues with safety and energy capacity.

To push this research, Martin recently received a three-year, $2.5M grant from the DOE.

“This is my dream-come-true project,” Martin says. “This is what I’ve been working on for 36 years.”

(more…)

ECS Podcast – The Battery Guys

This year marks the 25th anniversary of the commercialization of the lithium-ion battery. To celebrate, we sat down with some of the inventors and pioneers of Li-ion battery technology at the PRiME 2016 meeting.

Speakers John Goodenough (University of Texas at Austin), Stanley Whittingham (Binghamton University), Michael Thackeray (Argonne National Laboratory), Zempachi Ogumi (Kyoto University), and Martin Winter (Univeristy of Muenster) discuss how the Li-ion battery got its start and the impact it has had on society.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Electric VehiclesIn 2005, the number of electric vehicles on the road could be measured in the hundreds. Over the years, researchers have made technological leaps in the field of EVs. Now, we’ve exceeded a global threshold of one million EVs, and the demand continues to grow.

However, the ultimate success and growth of the EV hinges on battery technology. With some scientists stating that convention Li-ion batteries are approaching their theoretical energy density limits, researchers have begun exploring new energy storage technologies.

ECS member Qiang Zhang is one researcher focusing on technologies beyond Li-ion, specifically focusing on lithium sulfur batteries in a recently published paper.

“The lithium sulfur battery is recognized as a promising alternative for its intercalation chemistry counterparts,” Zhang says. “It possesses a theoretical energy density of ~2600 Wh kg-1 and provides a theoretical capacity of 1672 mAh g−1 through multi-electron redox reactions. Additionally, valuable characteristics like high natural abundance, low cost and environmental friendliness of sulfur have lent competitive edges to the lithium sulfur battery.”

(more…)

Lithium-ion battery safety has been a hot topic in the scientific community in light of instances of the Samsung Galaxy Note 7 bursting into flames. In order to address these concerns, scientists must first better understand exactly what is causing these safety concerns. In order to do that, a team from the University of Michigan is looking inside the batteries and filming growing dendrites – something the researchers cite as one of the major problems for next-gen lithium batteries.


The study focused primarily on lithium-metal batteries, which have the potential to store 10 times more energy that current lithium-ion batteries. However, researchers believe that issues with dendrites cannot be amended, the future of the Li-metal battery will not be as limitless as some believe.

“As researchers try to cram more and more energy in the same amount of space, morphology problems like dendrites become major challenges. While we don’t fully know why the Note 7s exploded, dendrites make bad things like that happen,” said Kevin Wood, postdoctoral researcher and ECS student member. “If we want high energy density batteries in the future and don’t want them to explode, we need to solve the dendrite problem.”

(more…)

John B. Goodenough

Goodenough was recently named Fellow of ECS at the PRiME 2016 meeting.

John B. Goodenough is recognized internationally as one of the key minds behind the development of the lithium-ion battery; a device that is used to power a huge percentage of today’s electronics and a technology that helped shape the technological frontier.

In a recent interview with the BBC’s Today program’s John Humphrys, the man who helped make the mobile phone possible discusses battery safety in light of exploding Samsung batteries, the Nobel Prize, and his why he doesn’t like cellphones.

“I see the students running around, punching these little tablets, and not talking with one another,” Goodenough says. “I see people going out to dinner and not talking to their partner, rather sitting there talking to someone on their phone, I say, ‘Well, that’s not the way to live.’ Technology is morally neural, it’s what we do with technology that judges us.”

Listen to the full interview here.

BatteryLithium-air batteries are viewed by many as a potential next-generation technology in energy storage. With the highest theoretical energy density of all battery devices, Li-air could revolutionize everything from electric vehicles to large-scale grid storage. However, the relatively young technology has a few barriers to overcome before it can be applied. A new study published in the Journal of The Electrochemical Society (JES) is taking a fundamental step forward in advancing Li-air through the development of mixed metal catalyst that could lead to more efficient electrode reactions in the battery.

The paper, entitled “In Situ Formed Layered-Layered Metal Oxide as Bifunctional Catalyst for Li-Air Batteries,” details a cathode catalyst composed of three transition metals (manganese, nickel, and cobalt), which can create the right oxidation state during the battery cycling to enable both the catalysis of the charge and the discharge reaction.

Future opportunities

According to K.M. Abraham, co-author of the paper, the manganese allows for the catalysis of the oxygen reduction reaction while the cobalt catalyzes the charge reaction of the battery.

“This offers opportunities for future research to develop similar materials to optimize the catalysis of the Li-air battery using one material that will combine the functions of these mixed metal oxides,” Abraham says.

(more…)